微細結晶粒 A1-Mg 固溶体における荷重急変後の押込みクリープ挙動

Indentation creep behavior after sudden load changes in fine-grained Al-Mg solid solutions

日本大学(院)〇山梨 直紀

日本大学 高木 秀有 藤原 雅美

Naoki Yamanashi, Graduate student, Department of Mechanical Engineering, Nihon University Hidenari Takagi and Masami Fujiwara, Division of Applied Physics, Nihon University

1. 緒 言

近年,結晶粒径が数十〜数百 nm 程度の微細結晶粒材では, 0.47m 以下でも時間依存の塑性変形(クリープ)が生じることが 報告されている.しかし,微視組織が熱的に不安定であることやバ ルク材を多数作製することが困難であるため,クリープ挙動やその 発現メカニズムに関する調査は進んでいない.

本報告では、僅かな体積の試料からクリープ特性を評価できる計 装化押込み試験法を用いて、微細結晶粒 Al-Mg 固溶体に対して 0.47m 程度の押込み荷重急変試験を実施する.荷重負荷時の押込 みクリープの発現と荷重急減後の押込み変位挙動を調査する.

2. 実験方法

Ar ガス雰囲気中で 773K, 24h の均質化処理が施された Al-1.0mol%Mg 合金の供試材(平均結晶粒径 $d = 800 \,\mu$ m)から,直 径 10mm,厚さ 0.80mmの円柱状ディスク試料が作製された.こ のディスク試料に HPT 加工(圧力:5GPa,回転速度:1rpm,回転 回数:5回)が施された.加工後,エメリー研磨によって,試料表 面が平滑にされた.焼鈍は,Ar ガス雰囲気中,373,393,423K において 24h 保持で行われた.試料の平均結晶粒径は,透過電子 顕微鏡を用いて測定され,それぞれ $d = 0.32,0.53,1.0 \,\mu$ mで ある.力学試験直前に電解研磨によって試料表面層が除去された.

押込み荷重急変試験は、マイクロインデンター(アルバック理 工製)を用いて、Ar ガス雰囲気中で実施された. 試験温度は T = 298, 363, 373, 383 K である. なお、押込み荷重F は 0.1s 以内に指定値に変化する.

3. 実験結果

Fig. 1 は、粗大結晶粒材($d = 800 \mu m$)と微細結晶粒材 ($d = 0.53 \mu m$)に対して圧子が試料表面に押し込まれた変位 uの時間変化を示している.試験温度はT = 298,373Kであり、 押込み荷重は $F_1 = 1.96$ Nから $F_2 = 0.098$ Nに急減されている. 圧子に荷重 F_1 が付与された直後、測定系の弾性変形と試料の弾塑 性変形が生じるため、押込み変位が急激に増加する.このときの瞬 間変位量は、結晶粒径が微細かつ温度が低いほど小さい. $d = 800 \mu m$ の結果において、どちらの試験温度でも、瞬間変位が 生じた以降の変位増加はみられない.これは、圧子下において押込 みクリープが発現していないことを意味する. $d = 0.53 \mu m$ の結 果において、T = 298Kの場合、上述と同様に押込み変位の増加 はみられない.一方、T = 373Kでは、押込み時間の経過とともに 変位増加が認められ、t = 800s後には2.5 μm だけ増加する.これ は、圧子下において押込みクリープが発現することを示している. 次に、t = 800sにおいて、荷重を F_1 から F_2 に急減したデータに

着目する. **Fig.2**は, Fig.1の荷重急減部を拡大したものであり,急 減直前の各々の押込み変位 u_1 を点 A として一致させて表示して いる. 荷重が急減されると,押込み変位は 0.1s 以内で点 A から点 B へと減少する. このとき検出された $\Delta u_1 = 1.4 \mu m$ は, どの場合 も等しい. 同様な試験を異なる急減量で実施した結果, Δu_1 と急 減量は比例関係にあることが確認された. これらの結果は, 急減直 後に生じた Δu_1 が測定系と試料の弾性回復によって生じたことを 示唆している. $d = 0.53 \mu m$, T = 373 K において, Δu_1 が生じ た後,押込み変位は点 B から点 C まで徐々に減少し, $\Delta u_2 = 0.40 \mu m$ を検出する. その後,変位変化は認められない. 一 方, $d = 800 \mu m (298,373 K)$, $d = 0.53 \mu m (298 K)$ の場合, Δu_2 はほとんど検出されない. 以上の結果は、微細結晶粒材において押 込みクリープが生じる場合、弾性回復(Δu_1)後に変位減少(Δu_2) が検出されることを示している.

Fig.3は、 $d = 0.32, 0.53, 1.0 \, \mu m$ 、T = 373 Kにおける押込 み変位の時間変化を示している.図から明らかなように、負荷直後 に生じる瞬間変位量は、結晶粒径が微細なほど小さい.その後、圧 子下で押込みクリープが生じるため、押込み変位は徐々に増加する. このときの押込みクリープ速度 $\dot{\epsilon}$ (= \dot{u}/u , \dot{u} :押込み速度)は、 結晶粒径が微細なほど大きい.荷重急減は、各々の試料に対して異 なる押込み時間で実施された.これは、急減直前の押込み変位 u_1 を一致させることで圧子による押込み圧力p ($\propto F/u^2$)を等し くするためである.図において、急減直前の u_1 は約15 μm であり、 どの場合も $p_1 \cong 450 M Pa$ となる.ただし、急減直前の $\dot{\epsilon}$ は異なる. **Fig.4**は、 Δu_2 と結晶粒径dの関係を示している.図に示されるよ うに、結晶粒径が微細なほど Δu_2 は大きい.挿入図において、 $d = 0.32 \, \mu m$ の場合、押込み変位は徐々に減少し、 $\Delta u_2 = 0.51 \, \mu m$ が検出される.他の結晶粒径においても同様な傾向を示している.

Fig. 5は、 $d = 0.53 \mu m$ 、T = 363,373,383 Kにおける押込み 変位の時間変化を示している.負荷直後の瞬間変位量は、どの場合 もほぼ等しい.他方、 $\dot{\epsilon}$ は試験温度が高いほど大きい.これは、温 度が高いほど圧子下においてクリープが顕著に生じることを示し ている. $u_1 \cong 15 \mu m (p_1 \cong 450 M Pa)$ で荷重急減は行われた.**Fig. 6** は、 Δu_2 と試験温度*T*の関係を示している.図に示されるように、 Δu_2 は*T*とともに直線的に増加する.挿入図において、急減後の 変位変化は Fig. 4 と同様な傾向を示している.

Fig.3 と Fig.5 から,結晶粒径 d が微細,または試験温度 T が高 いほど,急減直前の $\dot{\epsilon}$ は大きいことがわかる.このとき, Δu_2 も 大きくなる.この Δu_2 の大きさは d やT によって決定されるのか, $\dot{\epsilon}$ によって決められるのかは,現時点では不明である.

4. 結 言

- (1) *d* = 0.32,0.53,1.0µm , *T* = 363,373,383K において, 押込みクリープが発現する.これは, *d* が小さい,または*T* が高いほど顕著になる.一方, *d* = 0.53µm , *T* = 298K の 場合,押込みクリープは発現しない.
- (2) 押込みクリープが発現する場合、荷重急減直後に生じる測定 系と試料の弾性回復後、変位減少(Δu2)が検出された.一 方、押込みクリープが発現しない場合、Δu2はほとんど検出 されない.
- (3) *d* が小さい,または*T* が高いほど急減直前の*έ* は大きい.このとき、Δ*u*₂ も大きくなる.

謝 辞

本研究で用いた微細結晶粒材は、九州大学の堀田善治教授のご指 導のもと、当該研究室所有の HPT 加工機を用いて作製された.こ こに記して謝意を表す.