Central Extension of Current Algebras on S°, and the
Central Extension of the Lie Algebra of Polynomial

Type Infinitesimal Automorphisms on S°

Tosiaki Kori

An affine Lie algebra is a 1-dimensional central extension of a simple Lie
algebra with the Laurent polynomial coefficients. We develop an analogy for
the current algebra on S®. We introduce the algebra of Laurent polynomial
type harmonic spinors £ on S3. Then we introduce a triple of 2-cocycles on
L. A central extension by C? of the simple Lie algebra with the coefficients
L is obtained.

Virasoro algebra is a 1-dimensional central extension of the Lie algebra
of ( complexified ) vector fields over S!. Khesin-Kravchenko and Radul
introduced a 2-cocycle on the algebra /DO of Pseudo-differential operators
over a manifold. We apply their method to the Lie algebra of polynomial
coefficient vector fields over S3. The latter is a subalgebra of ¥DO. We
obtain an analogy of Virasoro algebra on S®. We shall show the table of
2-cocycles of the basic vector fields on S3.

This lecture consists as follows:

1. ( After Kac’s Bombay lecture note) Introduction to the central exten-
sion of the complex loop algebra on S! and the central extension of

the Lie algebra of complex vector fields on S*.

2. Classical analysis on Fourier analysisi on S!, Cauchy operator and

Laurent polynomials



3. A parallel analysis on S3; Dirac operator on R*, the separation of
variable method of the boundary Dirac operator, and the Laurent

polynomial type spinors

4. Central extension of Current algebra on S3; = central extension of the

complex Lie algebra with Laurent polynomial type spinor coefficients
by C3.

5. Algebra of polynomial coefficient vector fields on S?: Witt algebra,

and its central extension.

6. (i) The table of structure constants of the Witt algebra on S and (ii)

the table of the basic 2-cocycles ( there are nine ) on it.

As for the detailed explanation of (3) and (4) the readers can refer my
previous papers ( ask me ( kori@waseda.jp)). As for the long calculations

of the table of 2-cocycles the detailed calculations are available from me.



Preparatory

Lemma 0.1. Let M be a Lie algebra over C and
M ={z+X; z€M IeC}

with a an indefinite number.

Let c: M x M — C be a bilinear map satisfying

c(z,y) = —cly,z) z,yeM

c([x,y], z2) + c(ly, 2], ) + c([z, 2], y) =0 =x,y,z€ M

(c is called 2-cocycle on M ).
Then the Lie bracket

[+ Aa, y + pal = [z,y] + c(x,y)a

makes M into a Lie algebra.

M is a central extension of M, i.e. there is a surjective homomorphism
0:-M>z+X a — z€M

such that dim kerf = 1 and ker 6 lies in the center of M; [k, z + Aa] = 0
for Vk € ker6 and Vo + \a € M.



Loop algebras and central extensions

L = C[t,t71]: the Laurent polynomials in ¢:

Z apt", teC

neZz
finitely many a,, # 0.
The residue Res : L — C is defined by Res (> ant") = a_;.

g,[, ]: a simple finite dimensional Lie algebra.
Lg=L®cg.

Lg may be made into a Lie algebra in a unique way
[for, g0yl=Ffg@[z,y, fgel ryecg
Let (, ) be the invariant bilinear form on g. Deine a bilinear form

(,): LgxLg— L

(f@z,g@y) = fg@ (z,y)



Lemma 1.1. The function ¢ : Lg X Lg — C defined by

d
c(§,n) = Res <d—§, n)

15 a 2-cocycle on Lg.

Proof. To show that c is anticommutative it is sufficient to verify that
("R, t"R@y)=—ct"Ry, t" R x).
Now

(" @z, t"Qy) = Res.(mt™ ! @ x,t" @ y); = Res. (mt" ™" N, y))

 mlzy) ifm+n=0
0, ifm+nz#0

The anticommutativity follows. Jacobi identity is proved similarly. ]

We may therefore construct the 1-dimensional central extension
[/JB = Lg® Ca
with Lie multiplication

€+ Xa, n+pa) = [ n] +c&n)a, VE&neLg, \peC.



Loop algebras and central extensions

L = C[t,t71]: the Laurent polynomials in ¢:

Z apt", teC

neZz
finitely many a,, # 0.
The residue Res : L — C is defined by Res (> ant") = a_;.

g,[, ]: a simple finite dimensional Lie algebra.
Lg=L®cg.

Lg may be made into a Lie algebra in a unique way
[for, g0yl=Ffg@[z,y, fgel ryecg
Let (, ) be the invariant bilinear form on g. Deine a bilinear form

(,): LgxLg— L

(f@z,g@y) = fg@ (z,y)



Lemma 2.1. The function ¢ : Lg X Lg — C defined by

d
c(§,n) = Res <d—§, n)

15 a 2-cocycle on Lg.

Proof. To show that c is anticommutative it is sufficient to verify that
("R, t"R@y)=—ct"Ry, t" R x).
Now

(" @z, t"Qy) = Res.(mt™ ! @ x,t" @ y); = Res. (mt" ™" N, y))

 mlzy) ifm+n=0
0, ifm+nz#0

The anticommutativity follows. Jacobi identity is proved similarly. ]

We may therefore construct the 1-dimensional central extension
[/JB = Lg® Ca
with Lie multiplication

€+ Xa, n+pa) = [ n] +c&n)a, VE&neLg, \peC.



The Euler derivation t% acts on [//B as an outer derivation and Kkills a:

d dé
ta(f—l—)\a) —t%, e lLg

Then adjoining a derivation d to [/JB we have the Lie algebra g:
g=Lg® Caa Cd,
with the bracket defined as follows:
trRrdAdvd, @y ® N\c®vid]
= (" @ [z,y] + Vit @ y — vikt* @ 2) ® ko _i(z]y)e,

for (x,y € g, \,v, A\, 1 € C).

In brief an affine Lie algebra is a central extension of a simple Lie algebra
with the Laurent polynomial coefficients.

To develop an analogy for the current algebra on S® we introduce the
algebra of Laurent polynomial type harmonic spinors on S3. Then we in-

troduce a triple of 2-cocycles on this algebra.



Lie algebra of complex vecor fields on S!

Vect(S?) : the Lie algebra of real vector fields on S*:
1 9 00
Vect(S) > f(6 ) , fec=(s

The Lle bracket of vector fields is:

1O 90251 = (7~ F'5)(6) o

A real basis is provided by the vector fields

0 0 0

59’ COS(nQ)aQ sm(n@)ae n=12-:--

Remark 3.1. (no convergence discussion, so f(6), g(f) are any trigono-

metric polynomials.

The complexfication of Vect(S'):

0 d .
_ b _ . n+l . — 0
D_{d = 1e 20 z o net, z e}

The Lle bracket of vector fields is:

[di s dp] = (m —n)dpsn, m,n€Z



Remark 3.2. The Lie algebra Vect(S!) is the Lie algebra Dif f,(S?) of
orientation preserving diffeomorphisms of S*:

v € Dif f,(S1) acts on C*(S*, C);

For v ~ Id, we have
v(2) =2+ ze(2) = 2 + Z €n2" L

e(2) =2+ 200 om0 €,2" "1 is the Laurent (Fourier ) series.

Since o
)= 3 e
n=—00,n#0
we have
(VPR =flz= ) @) =1+ ed)f(2)
n=—00, n#0 n
with d,, = —z"*1 4L

dz’
Hence the d,,’s form a topological basis of the complexication of the Lie

algebra D.
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Central extensions of D: the Virasoro algebra
Suppose we have a 2-cocycle ¢(m,n) € C, m,n € Z.
Then the central extension D of D by a 1-dimensional center Ca is

obtained:

D=Da& Ca

[dny dn] = (M —n)dyn + c(m,n)a, [dny,al=0. (3.1)

11



e CALCULATIONS ( Kac: Bombay Lecture or ...)

1. rescale:d), = dy, d, =d, — €0 .m0 to have

n n

[dy, d)] = —nd,, n=0,%1, -

0 %'n

Suppose this relations
[dy, d,] = —nd, (3.2)

from the first.

2. Jacobi identity for dy, d,,, d,—
[do, [dn, dn]] = —(m +n)[dp, d,) (3.3)

(3.1)(3.2)(3.3) = (m +n)e(m,n)a = 0 =>c(m,n) = 6, _nc(m), so
that
[dm, dp) = (M — n)dpn + O —nc(m)a, (3.4)

3. From the anticommutativity of Lie bracket it holds ¢(m) = —c(—m).

4. Jacobi identity for d;, d,,,d,, with [ +m +mn =0 and (3.4) =
(m —n)e(m+n) — (2n+m)c(m) + (n 4+ 2m)c(n) =0 (3.5)

and
(m—1)c(m+1)=(2+m)c(m) — (1 + 2m)c(1) (3.6)

5. Since ¢(—m) = —c¢(m) , ¢(0) = 0, eough to solve it for m > 0 only.
(3.6) being linear recursion relation, the dimention of the solution

space is at most 2.
c(m) = am + fm3.
6. For f = 0 the extension becomes the trivial one

12



7. For 8 # 0 we may take

c(m) = B(m* —m)

We put g = %
Definition 3.3. Virasoro algebra is the Lie algebra Vir with basis
{dn, meZ; a}
and the commutationrelations

() a] =0 (3.7)

3

(dy s dn] = (m = 1) dpyin + 05" a (3.8)

13



4

Classical Analysis on

C ~R?) ~[0.c0)xS*

z=T+1y ~ ~rev.
Y

cos) —sind

sinf cosf

, x x cosf —y sinf
z=x 41y = — gz =
Y x sinf 4+ y cosf

e SO(2) acts on C™°(R?):

e U(l) 3¢ ~ ( > € SO(2) acts on R? :

(R,F)(2) = F(g7'2) = F(z cosf +y sin®, —z sind + y cos0)

s0(2) = {X; 2 x 2 matrix/R, X + 'X =0, tr.X = 0}

Infinitesimal action of so(2) on R*:

(dR). : u(1) ~ s0(2) — Vect(R?)

s0(2) 3 (g 08> —>(dR)e(<2 09>> = —%

14



In fact.

dR(<0 _t>)F($,y) = iltzoReﬁF(w,y)

t 0 dt
0 0 0

%ReuF(x,y) = %F(xcos t+ysint, —xsint + ycost)

— %_5 %(m cos t +y sin t) + %—5 %(—xsint + y cost),

is the rotation vector field around 0 € R? and
is a basis of Vect(S?).

15



4.1 Cauchy operator 0

Coz=z+iy=re? =cosh +isind

1 1
$:§(Z+5)7 y:2—i(2—z)

Ql

I
Sl

|
DO | —
VR
S

+

~
S| @
N———
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¢ Eigenvalue problem on S! = {z = ¢} of the boundary Cauchy

0

operator ;.

0

~i 55.0(0) = A6(0)

is solved by the eigenvalues:
A=0,=+1, +£2,--- ,£n, ---

and eigen functions:

with the normalization condition:

/_ " 5,00 :(0)d0 = 6

17



e Fourier expansion

Vfe Clsh

o

F0) = > crdu(0)

k=—00

o= [ 1)) .
We shall show

e "Fourier expansion” <= " Laurent expansion ”.

+ikd +n

e basic functions e <= basic functions z

18



Separation of variables & holomorphic extension

o Given f(6) = X300 ccou(6) on % o = [7_ f(6) e db.
Find F on D? = {|z| < 1} such that

OF =0, |z]<1
z:r619,0§r<1,—7r<9§7r
F =f, |z|=1,

e The solution obtained as follows.

Let the extension have the formula

Since I — 4 (4 114) P =0
it holds that
S an (e g (0) + LRy L)
=Y ar (G — LRy = 0.

e From the conditions: F": regular at z = 0, ¢;: linearly indepen-

dent, and F = f on |z| = 1, we have
ap = 0, Vk < —1,

arpRy(r) = ¢ r*

19



ap =0, Vk < —1 and apRy(r) = ¢ .

F(z) = F(re”) = 32 arr'on(0) = 3012, a 2"

= J"_f()e*db

00 1 - 00 '
F(z) = Z et = %/ f(@)Ze_’kezde
k=0 -7 k=0

_ L S g - L[ Q¢
i |, 1O (;;u)u ol M

1 f(©)
= — d
271 ‘<|:1C—Z C

Cauchy integral formula on |z| < 1!

20



e exterior Dirichelet problem

Given £(6) = S50 cxul6) on % e = [T f(8) e do.
Find F on D¢ = {|z| > 1} such that

OF =0, |z|>1

S F = f, |z=1, z=ré?. 0<r<l1, —w<0<nm

F = 00y2).

F' is regular at z = 00, ¢; is linearly independent, and F' = f on
‘Z| =1,
it follows that

k=1 00
F(2) = F(re?) = Z ckroR(0) = Z c_pz "
—00 k=1
F(z) = Z c_pz F = L/ f(@)ZeZkaz_de
k=1 27 Jn k=1
- _ L . k—1_—k d
i J o, 1O (;c 2 ) ¢
1 f(¢)
= —— d
271 I¢|=1 C — Z C

exterior Cauchy integral formula on |z| > 1.

21



e Laurent expansion F holomorphic on 0 < |z| < co has the expan-

sion

P L[ SO L Q)

= — : d¢
271 B g — Z 271 I¢|=r1 C— 4

for r < |z| <19, 0 < Vry < Vrs.

e >*" a basis of holomorphic functions on 0 < |z| < co:

F(z) = Z cnz" + Z c_pz "
n=0 n=1

e Residue

The coefficient ¢_q of 27! is called the residue of F at z = 0:

211

Res.F(0) = L,/q_ F(¢)d¢, Ve>D0.

22



5

e Ingredients consist of

If we have the corresponding ingredients on S® C C? we shall obtain

”classical analysis” on S® and its calculations.

[Clifford-Hamilton, Dirac-Pauli]

"functions 7 = matrix and then ”spinors”

U(1) ~ SO2) = SU(2)/ £ 1 ~ SO(3)

Contemporary Classical Analysis on

C’~R*~[0.00) x §*

e (i) Basic polynomials on S* C C?

(ii) Basic vector fields on S C C?
that comes from the representation of SU(2) ~ SO(3)

23



og(Z )ESU(2)NSO(B)actsonC2~R4:

a
21 az1 — bzg
z = — Ryz =
29 aze + bz
e SU(2) acts on C>(C?):

(RyF)(2) = F(2-g) = F(az — bz, a2 + bZ)

e Basis of su(2) = {X €gl(2,C): 'X + X =0, tr.X =0} :

o1 = , Oy = , 03 = , Pauli matrices.

e Infinitesimal action of su(2): (dR). : su(2) — Vect(S?).
d
(dRe)<X)F = %‘t:ORexthFa X € SU(Z),

is given by

dR(O'g) == —\/—_100, dR(O’Q) == \/—_191, dR(O'l) == \/—_].92

Where
th =epte_, 0y = —1(ey —e_ ),
ey = —ZQ%+21%, e_ = —52i+21i.
A1 2 07z 079
Oy =v—10 = V=1(z1:>- + 225> —% 8_ — % 8_ ).
1 72 07 079

24



We have the commutation relations;
0,e.] =2e., [fe]=—2e, ler,e_]=—0.

Lie algebras spanned by (ey,e_,0) is isomorphic to sl(2, C).
e By the Euler angle coordinates (6, ¢,v) on S3;

21 = cosgexp(g(w + @), 29 = mSingeXP(g(@/J —))

we have the following expression:

0
0y = —
0 8w7
, 0 cosy O 0
0, = —smg/J%%— sin98_¢_00tecos¢@
0 siny 0 , 0
0y = COS@D%Jr sin98_¢_60t98m¢@

These are the rotation vector fields around 0 € R* |

and give a basis of Vect(S?).

25



6 Dirac operator

C?> (21 =T + 129, 29 == X3 + il’4)

FR Y. o _ o .9

821 o 8%1 Zax2 ) 822 o 8%3 15527

or, k=1,2,3,4, Pauli matrices

The half Dirac operator has the expression:

0 9
821 825
D =
0 9
029 021
0 0 0 0

— —i—03 — i —0y — i —0
8361 81‘2 81‘3 81‘4

[ Remember 0 = -2 — i -2 ]
8%1 8%2

e Polar decomposition of the Dirac operators D :
0
D = ——q).
Y+ <69T éﬂ>
@; the boundary Dirac operator , is given by
1 _%9 €+

0

1
2

26



In the above

r=|z|.
o =3 (zla%Jera% +7Z17% +z2a%) .
~ denote the Clifford multiplication of the radial vector % :
Y=, By :STHST — S BST,

=1

[Remember; 9 = 1€ (£ + 4

2

= =

) |

SN

27



¢ Eigenvalue problem on S? of the boundary Dirac operator .

We define the monomials:
Uéfl’m_l) = (e_)kzizgl_l . m=0,1,2,---, 1,k=0,1,---.m

They play the same role on S? C C? as the monomials z=" do on
St c C:
1. Ué“l 1) is a harmonic polynomial on C?; AUZ m—l) = 0.

2. {ﬁvflm_l); m=0,1,---,0< k< m} forms a complete

orthonormal system of L?*(S?).

3. For each pair (m,l), 0 <1 < m,

Hppy = {Uz,m—z) ;0 <k <m+ 1} gives a
(m+1)-dimensional representation of su(2) with the highest weight
o
e+vé‘}’m_1) = —k(m—Fk+ 1)/08,_W1L—l)7
€ Vimt) = Vimoi)
QUﬁjm_l) = (m— Qk)vﬁ,m—z) :
4. Therefore the space of harmonic polynomials on C? is decom-

posed by the right action of su(2) into >, > " Hp.

28



The boundary Dirac operator on the sphere S® = {r = 1};
P)S% . C>(S°,81) — C™(8%,57)
is a self adjoint elliptic differential operator.

A basis of the space of even harmonic spinors;

¢+(m,l,k)(z) _

kUk_l
\/(m +1—k)! (l’m_w\

Kl (m — )] ’

_“5m,n)
(wégm—i—l—l,l)

(i, (m+1—k)! [/ 1\
¢<lm@¢MMm—U!Qﬂ> §

\luénfhk%n

m o= 01,2, 50=0,1,--,m, k=01, ,m+1,

where

29



Proposition 6.1. 1. dTmLR) s a harmonic spinor

on C? and ¢~ "™k is a harmonic spinor on C*\{0} that is reqular
at infinity.
2. On S = {|z| = 1} we have:

@d)-l—( Lk) _¢+( k) : @qf) (mk) _ ¢ (m,l,k) .
2 2
3. The eigenvalues of @ are
T) _m+3a m:()vl?'"u
2 2

and the multiplicity of each eigenvalue is equal to
(m+1)(m+ 2).

4. The set of eigenspinors

1 1
Gk, bR =01, ,0<I<m, 0<k<m+1
V27 V2

forms a complete orthonormal system of L*(S3,S™T).

30



The restriction of C[¢*] to S? is an associative algebra generated

by the spinors:

1 0 29
¢+(0,O71) — 7 ¢+(0,0,0) — : ¢+(170,1) _ B ’
0 —1 —Z1

31



o (C(S3,5T): the set of smooth even spinors on S°.
C>(S%, ST 3¢ = (u) s u+jve S°H.
v

Since AT is the spinor representation of the Clifford algebra Clif5;, ~ H:
End(A3) ~ Clif§, we have the C-linear isomorphism H — A = C:

(%

A+9<u> +— u+jve H.

So we may look an even spinor as a H-valued function.

e On C*(83,S) we define the R-Lie algebra structure by

V1V9 — V1U2
[d1, ¢2] = :

(UQ — ’L_LQ)’Ul — (u1 — ”L_Ll)"UQ

for ¢ = (“1) o= (“““)
(%] (%)

This is equivalent to

[U1 + Ju1, ug +jv2] = (0102 — 01v2) + J ((u2 — ug)vy — (ug — u1)ve ) .

The trace of a spinor ¢ = (
v

u) is by definition

tro = 2Reu = u+ 7.

trlp,¢] =0

32



e The correspondence
C®(M,A") ~ C*(M,H) ~ C*(M,mj(2,C))

is convinient for the calculation.

‘ a —b
Where mj(2,C) = ) _);a,bEC}.
a

u —v

By it we identify ¢ = (u) with ( _ ) Hence the product
v vou

u U
( > ) ( 1) of two spinors is given by the matrix multiplication of
v U1

corresponding elements of mj(2, C), and trace ¢ = u + @ follows im-

mediatey.
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e Laurent polynomial type harmonic spinors and the residues

If ¢ is a harmonic spinor; Dy = 0, on C? \ {0} then we have the

expansion

p(z) = Z O+(m,l,k)¢+(m’l’k)(2) + Z Cf(m,l,k)¢_(m’l’k)(z), (6.1)

m,l,k m,l,k

uniformly convergent on any compact subset of C?\ {0}.

The coefficients C(,,,; 1) are given by the formula:

1

o [ (p, =R do, (6.2)

Cimik) =

where (, ) is the inner product of S7.

Lemma 6.2.

/53 trodo = 4772Re.0+(070,1), (6.3)

/ tr Jodo = 4772Re.0+(070’0).
S3

1
The formulas follow from (6.2) if we take ¢*(01) = ( 0 ) and J =

$+000) — 0 ’
—1

Definition 6.3. 1. We call the series (6.1) a spinor of Laurent poly-
nomial type if only finitely many coefficients C'y (1) are non-zero

. The space of spinors of Laurent polynomial type is denoted by

Clo].
2. For a spinor of Laurent polynomial type ¢ we call the vector

34



—C_
res = ( (0.0.1) ) the residue at 0 of .
C_(0,00)

e We have the residue formula:

1

esp = g [ 7e(2)plz)o(d2). (6.4)
5’3
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7 Extensions of the current algebras on S°

e Extensions of the current algebras on S°

e Basic vector fields and basic 1-form on S3.

0 0 s, 0
— + 21—, e. = —Z—+ 2

821 82’2 82’1 8_22

0 = za—i—za—z_a—z_i
- 1821 2322 182_1 282_2 .

the commutation relations;

0,e.] =2e., [f,e]=—-2e, e, ,e]=—0.
Dual basis :
( 96 = 2‘i|2 (Eldzl + EQdZQ — Zld§1 — ngzg),
§ 07 = %(ei+e’i)
| 65 = Y (en —er)
where
c = L sam 1 mdm), € (—29d2 + 21d2)
e, = ——=(—2dZz zZ1dzZ e = ——(—2z9dz1 + z1dz
+ |Z’2 2 1 1 2)s — ’Z|2 2 1 1 2)
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0;(0r) = O

2. very important relations: 8, = 6;..

3. Integrable condition:

V-1
Tty =0 03,

V-1
Yo—db; =05 16,

V-1
Yodbs =05 A 07

4. 05 N 07 NO5 = dogs : volume form.

5.
/ Ofdo =0, k=0,1,2
5’3

for any function f on S°.
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) 2-cocycles on S*H = C*°(S3 H) ~ C>(S3,5T)

U
go( >€S3H,
v

Put
%Qk 0 U 1 Qku
Orp = =3 : k=0,1,2.
0 %Qk v ka
e For ¢ and ¢ € S?H , we put
1
cr(o1,02) = — tr (Oro1 - ¢2 ) do. (7.1)

27'('2 S3

e Foreach k =0,1,2, ¢, defines a non-trivial 2-cocycle on the algebra
S3H.

That is, ¢, satisfies the equations:

cr(P1¢2) = — cr(92, ¢1) (7.2)

k(o1 - @2, ¢3) + ci(P2- Pz, ¢1) +cp(d3- P11, d2) =0 (7.3)
for any ¢17 ¢27 ¢3 S SSH)

and
3 1-cochain b such that c(¢1.¢02) = b( [¢1, $2] ).
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2-cocycles on the Laurent polynomial type harmonic

spinors
L = Laurent polynomial type harmonic spinors on 53

L being a subalgebra of S3S3H, ¢, for each & = 0, 1,2, defines a

non-trivial 2-cocycle on L.

Central extension of S°gl(n, H)

C-valued 2-cocycles on the real Lie algebra S3gl(n,H) = S°H ®
gl(n,C):

Extend the 2-cocycles ¢, k = 0,1,2 on S°H
to S3gl(n, H) by
Ck(d)l@Xa ¢2®Y) = (X‘Y) Ck(¢17¢2)7 k:O7172 (74)

where (X|Y) = Trace(XY)

The 2-cocycle property follows from the fact
(XY|2) = (YZ]X)

Let ai, £ = 0,1, 2, be three indefinite numbers.

For each £ =0,1,2
there is a central extension of the Lie algebra S3gl(n,H) by the 1-

dimensional center Ca; associated to the cocycle ci.

Theorem 7.1.

S3gl(n, H)(a) = (SPH® gl(n,C)) & (Br=012Cay), (7.5)
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endowed with the following bracket becomes a real Lie algebra.

o~

(0 X,vRY] = (- )XY —(¢-¢) VX
2

HXY) ) o) ar,

~

[ak‘7¢®X] - O7k:07172
for ¢, ¢ € SPH and any bases X, Y € gl(n, H).

Check : R-linear, antisymmetric, Jacobi identity.
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e As a Lie subalgebra of S3gl(n, H)
we have the Lie algebra of gl(n, C)-valued Laurent polynomial spinors
on S3:
Lgl = C[¢"] ®c gl(n, C).
The basis of C[¢*] ® gl(n, C):

1<, 5 <n,

Cbi(m’l’k)@Eij, .
0<m, 0<I<m 0<k<m+1

As a Lie subalgebra of S3gl(n,H), L gl has the central extension by
the 2-cocycles ¢, k = 0,1, 2, as well:

Lgl(a) = Lgl @ (9_, Cay).
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e The radial vector field dy on C?\ 0 is extended to act on L gl(a) as

an outer derivation.

Then, adjoining the derivation d, we have the second extension:

ol = Cl¢*] ®c gl(n, C) ® (B7_,Cay) ® Cd.
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8 Algebra of infinitesimal automorphisms on S° and

its central extension

e Basis of vector fields on S% ~ {|z| = 1} C C%.

ey = —2’28 +2’18 6_:—526 +518
07 0% 07 079
0 = <21a +Zga —Z_la _Z_Qa>
0z 079 07 0%

with the commutation relations;

[97 6+] = 2€+, [07 6_] - _26—7 [€+7 6_] = —0.

e we define the polynomials:

g (e_)Fztzmt,

m = 0,1,2,--- I,E=0,1,---,m

Then vfl,m_l) is a harmonic polynomial on C? \ {0} restricted to

S3 c €2\ {0}

e+v87m_l) = —k(m—Fk+ 1)1}5}1_0,
k k+1
C-Vim—1) = U(zjrmfzy

evéfl,m—l) - (m - Qk)véghm—l) :
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8.1 Witt algebra on S°

e We shall investigate the space of vector fields on S® with harmonic

polynomial coefficients.

Definition 8.1.  V(S?) is the set of vector fields on S? with har-

monic polynomial coefficients.

Basis of V(53):

Ll(ﬂlvm_l) - Uéfl,m—l) '90 )
Eé’m_l) - U@,m—l) €+, 0 <m,
F(]Zm—l) - U@,m—l) e_.

V(S?) is a Lie algebra with basis

{LI({:Lm—l)) Eﬁ,m—l)? F(]};,m—l) , 0 < m,
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notation
a:(a17@2)7 5:(51752)7'“ ) 1:(171)7 kl:(kak)

atf = (a1 B, a0 % Bo)

s (5)=(0) (%)
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e The structure constants of V(S?) are:

h+k
ol — -
2 15) = VIt ST o g £
j=0
1 h-tk _
[, E5) = V=I(k = 5181+ 1) Y Cjla b 8. EnfE T
=0

h+k+1 ‘
— ) Cila,h+ 18, k) Lo
j=0

h+k

1 -
[LZ7F§] - _1(k_§|ﬁ‘_1)ZCJ(Q7h767k)FjI§—§1
=0

h+k—1
—h(la] —h+1) Y Cila,h—1;8,k) LT
j=0

h+k
(Bl ES] = ) (Cilonhs Bk +1) = Cila, h+1;8,k)) Extsty?
j=0
h+k—1
[Er FE] = > {h(lal = h+ 1)(Cjla, h—1; 8, k)
j=0
— k(18] — k + 1)Cj(a, by B,k — 1)} FLi—i!
hpky1 — = : htk+1—j
(Bl FE) = > Cilohs Bk + 1D)F) T
j=0
h+k—1 '
+h(lal =h+1) > Cila,h— 18, k) E 50
j=0
h+k

=2 " Cila, b B, k) Lot
7=0
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In the above the constants Cj(a, h; 3, k) are defined by the following:

Lemma 8.2.

1. Giwen a, h, Bk,

h k
HCj:Cj(a,h;ﬁ,k)ECj( ; ), ]:0,,h+]€
a B
that satisfy the relation
h+k - '
va b =D Gl ol
=0
2.
h k k h
Cj( ) ) = CJ( ) )
a [ 8«
3. If g1+ g2 = k1 + ko,
P1 P2 p1+p2— 1 D3
Ci (75 77 ) Oy o)
a1 Q9 a1 + Qo _]11 a3
+p3 — k
=Ck1(p2; p3)0k2( P2 T P3 1 : p1>
Qy Qs oy +as3 — kil o

<— D1 9yP2 P3 — yP1 D2 1,P3
(Umvaz) vas - qu (Uazvozs)

example

Oﬂ(a70; 670) = 17

| AN
C’m(m,l,k;m —1.lm— k‘) = (_1)m—l+kl.(m+ 1l)
m
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DS = Functions on the cotangent bundle T*M" \ {0}

CL(M”)—{a— > ak(x,g)}, 0£EeTiM,

—oo<k<d

: the ring of formal pseudo-differential symbols on M".

Here a;(z, ) are functions on the cotangent bundle with zero section

removed of homogeneous degree k in &.

The multiplication in CL(M™") is:

a-b:Z$(8§‘a)(8§b). (8.1)

«

where o denotes a multiindice

for example

For M = S1 (8.1) coresponds to (??) by 0 — &:

0%, fO"] — Y (j) fUenmtemd = ¢ . fem = [¢°, fem]
j=1

(remark: (f&™)-£“=0!)

DO > Y ap(2)d" — D ap(x)s € CL(SY)

—oo<k<d —oo<k<d

e the non-commutative residue ( Wodzcki ):

Resa = / a_p(r, &) a N W
{lgl=1}

fora=5% __ _.<4ax(r,§) € CL(M").  an-formon M.
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tra = / Resadx .
M

o= Z &dx;; canonical 1-form, w = da.

aAw"” volume form on the cotangent sphere S*M = {|¢| = 1}

S . an ellptic differential operator of order m on M

with the leading symbol s,,(z,&) > 0, £ # 0.
Theorem [ Radul |

c(a,b) = /M Res([Ilnsy,,a]-b), a,be CL(M) (8.2)

gives a cocycle on the algebra C'L(M).
Note: though In s, (z, &) ¢ CL(M), we have

[Ins,(x,&),CL(M)] ¢ CL(M).

There exist a central extension of C'L(M) by Radul cocycle c,

and a central extension of the subalgebra Vect(M) C CL(M) .
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9 Central extensions of Vect(S?)

Apply
” Theorem [Radul]

c(a,b) :/M Res(a - [Ins,, b]), a,be CL(M) (9.1)

gives a cocycle on the algebra C'L(M). ”

to
0 0 0 0
Vect(S?) 3 J'jl(?i)ﬁ—z1 + f2(»’<7)a—z2 + gl(z)(‘)_il + 92(2)8_22
— [i(2)& + fo(2) + ()6 + ()6, € CL(S?)
where
symbi =6 eT; C2|S3
821
etc.

Res is considered on C?\ 0.

We take the elliptic symbol s,,(2,¢) = symb (Acz) = [¢[*.
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Definition 9.1. For X,Y € Vect(S?), put
ROCY) = [ (Csymb X [l fcP, symbY ] )o(dc)
¢1=1

where |(|* = symb.A.

o(X,Y) = / y R(X,Y)o(dz), i=0,1,2

c gives a cocycle on Vect(S?).

ol



9.1 Calculations of R(X,Y)

We shall calculate

R(X,Y) = /K:l(symbX- [In [C]?, symbY ] )o(dC)

for

X7: 007 €, €,

and
Y =h(2)ey, h(z)e_, h(z)b,.

where h is a harmonic function on C? restricted to S°.

After we shall take h = Ué“m 1)» SO that

XY =LF EF EF.

o2

9.2)

(9.3)



1
R(hleo, h€+) = g h/(0€+ — 6+)h (94)

1 1

R(We, hby) = h’(§e+9 + §e+)h (9.5)
R(W6o, hfly) = ——1' (60 + 2y (9.6)
0, 0) — 3 an .
/ 1 /
R(R 6, he-) = Sh'feh (9.7)
1
R(We_ hby) = gh’(e,Qo —e_)h (9.8)
/ ]‘ /

R(he+,he_):§h (ey-e_ +v)h (9.9)

1 1
R(We_, hey) = §h/ (ere_4+v)h = : h' (e_-e. +7)h  (9.10)

R(We_, he ) = éh’ (e e Vh. (9.11)

1
R(h/€+, h€+) = gh, ( €L € ) h (912)

23



