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I shall introduce Section 2 of E.Witten’s paper ; The Verlinde algebra and
the cohomology of the Grassmannian , p. 5 - p.29 , where the relation be-
tween the Verlinde algebra and the gauged WZW model of G/G is explained.
Witten’s description is given by physisist argument, that is, one introduces
an action functional and find the symmetry of actions by the infinitesimal
change of field variables. The description follows some line of conjectures
and is insupportably puzzled for those who are acquainted with the mathe-
matical description. Here I shall try to explain things in mathematics setting
whenever I can translate the content of each part of this paper to such style.
I must say that I could merely do this job almost half. But I hope you
will recognize the space of non-abelian theta functions and the definition of
Verlinde algebra; p.5-p.21of [W].

I prepared a small dictionary to see the correspondence between the in-
finitesimal actions of field variables and the covariant derivations by the ac-
tion of Lie group. I shall add some higher dimensional generalization which
I had no time to mention at the occasion of my talk. Moreover I put an
addendum to study classical results on theta devisors.

Many parts of Section 2 of this paper are duplicated from the same au-
thor’s paper: On holomorphic factorization of WZW and coset models, CMP
144,189-212(1992).
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1 Small dictionary of physics notations ( in-

finitesimal descriptions ) - our notations (

mathematics, global notations).

Witten page 7 ;

infinitesimal gauge transformation = LieG-action on A,

δg = −gu u=ξ
=⇒ g = exp ξ,

δAi = −Di u = −∂iu− [Ai, u] =⇒ dAξ = dξ + [A , ξ ]

Witten formula (2.3), p.6:

D

DAi
=

δ

δAi
+

i

4π
εijAj =⇒ ∇A = d̃+ θ

∇aΦ(A) =⇒ (∂AΦ)a+ θA(a)Φ(A) .

θA(a) =
i

4π

∫
Σ

Tr(Aa)

Witten formula (2.8), p.7:

(Di
D

DAi
− ik

4π
F ) =⇒ ξΣ + Jξ

∂

∂φ
= dAξ + (FAξ)

∂

∂φ∫
Σ

Tr α (Di
D

DAi
− ik

4π
F )

?
=⇒

∫
Σ

Tr (dAξ a − FAξ )
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2 The space of connections: gauge potentials

1. Σ: 2-dimensional manifold without boundary.
G = SU(n), n ≥ 2 , LieG = su(n).
P = Σ×G, or a trivial G-principal bundle.

2. A(Σ): Space of ( irredusuble ) connections on P .
A(Σ) is an infinite dimensional affine space modeled by Ω1(Σ, LieG).
Hence A + a ∈ A for ∀a ∈ Ω1(Σ, LieG). The tangent space TAA at
A ∈ A is Ω1(Σ, LieG).

3.

FA; curvature ; = dA+
1

2
[A,A] = dA+ A2, A ∈ A

4. Differential calculus on the affine space A(Σ) is executed by the Frechet
differentiation: For a polynomial Φ = Φ(A),

∂AΦ(A) = lim
t−→0

1

t
(Φ(A+ ta)− Φ(A)) , ∀a ∈ TAA

For example,

∂AA(a) = Aa, ∂AFA(a) = dAa = da+ [A, a], etc.

Vector fields and differential forms on A are defined in a usual manner.

d̃: exterior derivative on the affine space A.
For a function (d̃Φ)Aa = ∂AΦ(a), ∀a ∈ TAA. For a 1-form

(d̃φ)A(a, b) = ∂A < φ, b > (a)−∂A < φ, a > (b)−φ([a, b]), ∀a, b ∈ TAA

5. Group of gauge transformations .

G(Σ) : = Aut0(P ) = C∞(Σ, G )

Here Aut0(P ) is the group of base point preserving automorphisms on
P .

G(Σ) 3 g acts on A ∈ A(Σ) by

g · A = g−1Ag + g−1dg .

6.
M = A(Σ)/G(Σ), the moduli space of connections
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Various aspects of the moduli space of flat connections

A[ = {A ∈ A(Σ) : FA = 0 }, flat connections

M[ = A[/G, the moduli space of flat connections

1.
M[ ∼= Hom (π1(Σ), G) /G .

bijective correspondense.

Hom (π1(Σ), G) /G is the moduli space of representations of π1(Σ) in
the group G
modulus the conjugate representations :

g ∼ g′ ⇐⇒ ∃h ∈ G : g = hgh−1

2.

Hom (π1(Σ), G) /G ∼= set of equivalence class of flat G-bundle.

Here ”flat” means (1) a flat vector bundle with constant transition
functions, i.e. a local system, and (2) a vector bundle with a flat
connection.

3.
Hom (π1(Σ), G) /G ∼= MG

J .

MG
J is the moduli space of semi-stable holomorphic vector bundle

E −→ Σ of rank n with detE = OΣ.

Here we need a complex structure J on Σ and OΣ is the structure sheaf
on ( Σ , J ).
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3 symplectic structure and the moment map

1. symplectic structure

ω: 2-form on A(Σ) defined by

ωA(a, b) =
i

2π

∫
Σ

Tr(a ∧ b), a, b ∈ TAA.

non-degenerate closed 2-form on A.

• (A, ω) : symplectic space.

2. Moment mapping for the G- action

The infinitesimal action of a ξ ∈ LieG on A is given by the correspond-
ing fundamental vector field:

ξA(A) =
d

dt
|t=0(exp tξ) · A = dAξ = dξ + [A, ξ] ∈ TAA.

• The moment mapping of this action is given by

A 3 A J−→ J(A) = FA ∈ (LieG)∗.

In fact,

Jξ(A) =
i

2π

∫
Σ

Tr(FA ξ), for ξ ∈ LieG

(d̃ Jξ)Aa =
i

2π

∫
Σ

Tr(dAa ξ) =
i

2π

∫
Σ

Tr(a dAξ) = ωA(a, dAξ).

J−1(0) = {A : FA = 0} = A[; flat connections

4 Chern-Simons functional

1. N : a 3-manifold with ∂N = Σ.
For Ã ∈ A(N), Chern-Simons functional is defined by

CS(Ã) =
1

4π

∫
N

Tr(ÃF̃ − 1

3
Ã3), .
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2. By the action of a gauge transformation CS changes as

(δ CS)(g̃, Ã) = CS(g̃ · Ã)− CS(Ã)

=
1

4π

∫
Σ

Tr ( dg · g−1A) + Γ(g), (4.1)

where

Γ(g) =
1

12π

∫
B

Tr(dg̃ · g̃−1)3 ,

for g̃ ∈ G(N) such that g̃|Σ = g.

Since ( π2(G) = 1 ) g ∈ G(Σ) is extended to g̃ ∈ G(N), and Γ(g) is
independent of the extension g̃ by virtue of the fact H3(G,Z) = Z.

The RHS of (4.1 ) depends only on A = Ã|Σ and on g = g̃|Σ by
mod 2πZ .

proof of (4.1 )

CS(g̃ · A)− CS(Ã) =

1

4π

∫
N

Tr [(g̃−1Ãg̃ + g̃−1dg̃)(g̃−1F̃ g̃)− 1

3
(g̃−1Ãg̃ + g̃−1dg̃)3

−ÃF̃ +
1

3
Ã3]

=
1

4π

∫
N

Tr [dg̃g̃−1F̃ − dg̃g̃−1Ã2 − (dg̃g̃−1)2Ã+
1

3
(dg̃g̃−1)3]

Stokes
=

1

4π

∫
Σ

Tr (dg g−1A) +
1

12π

∫
N

Tr(dg̃ · g̃−1)3

3. Polyakov-Wiegmann

Put
W (g, A) = (δ CS)(g̃, Ã).

(4.1)
=

1

4π

∫
Σ

Tr ( dg · g−1A) + Γ(g).

Then (δW )(f, g;A) = 0, that is,

W (gh,A) = W (g, h · A) + W (h,A) , mod 2πZ. (4.2)
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5 Pre-quantum line bundle

1.
From Polyakov-Wiegmann (4.2),

exp iW (g, A) gives a U(1)-cocycle:

exp iW (f, A) exp iW (g, f · A) = exp iW (fg,A).

(cocycle condition)

2.
If we define the action of G on A× C by

g · (A, c) = ( g · A, exp iW (g, A)c ) ,

then we have a complex line bundle

L = A× C/G π−→M = A/G,

with the transition function

exp iW (g, A)

which is endowed with a hermitian structure ( the transition function
is in U(1)).

3.
Restrict the line bundle L π−→M to M[.

L[ = π−1(M[) = A[ × C/G −→ A[/G =M[,
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Proposition 5.1. 1.
L π−→M is a hermitian line bundle with connection θ, that is given by

θA(a) =
i

4π

∫
Σ

Tr(Aa). (5.1)

The curvature of θ is iω.

2.
L[ is a hermitian line bundle with connection θ given by the same for-
mula as above

This is analogous to the well known explanation of line bundle with con-
nection as you see below.

0

↑ d
ω −→ 0

↑ d ↑ d

θα = dsα
sα

δ−→ d log fαβ =
dsβ
sβ
− dsα

sα
= θβ − θα −→ 0

↑ d log

fαβ =
sβ
sα

sα: local section,
fαβ: U(1)-transition function,
θ: connection,
ω: curvture.

δθ = d log fαβ

The proof of Proposition5.1 follows if we show the commutativity of the
following diagram of ” Line bundle with connection” over A/G:

0

↑ d̃
ω −→ 0

↑ d̃ ↑

θA
δ−→ −i d̃W (g, A)

↑ d̃ log

exp iW (g, A)

8



Here exp ikW (g, A) is the U(1)-transition function, and θA is the
connection with the curvature ω. In fact

d̃θ(a, b) =
i

4π

∫
Σ

Tr(ab)− i

4π

∫
Σ

Tr(ba) = ω(a, b)

We have also

(δθA(g))a = g · θA(a)− θA(a)

=
i

4π

∫
Σ

Tr[(g−1Ag − g−1dg)g−1ag − Aa]

= − i

4π

∫
Σ

Tr[g−1dgg−1ag] = −i d̃W (g, A).

Thus we have the commutativity of the diagram.

6 Equivariant pre-quantum line bundles

Definition 6.1. (M,ω,Φ): a Hamiltonian G-manifold
⇐⇒ M : equipped with a G-invariant symplectic form ω
• G acts on M with a moment map Φ.

Φ: moment map ⇐⇒

(i) Φ equivariant : (Adg)
∗(Φ (m)) = Φ(g ·m),

i.e. ΦAdgξ (m) = Φξ(g ·m), ∀ξ ∈ g

M
Φ−→ g∗

g ↓ ↓ Ad∗g

M
Φ−→ g∗.

(ii) dΦξ = iξM ω , ∀ξ ∈ g
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Definition 6.2.
a Hamiltonian G-manifold (M,ω,Φ) is pre-quantizable
⇐⇒
∃ P

π−→M : G-equivariant U(1)-principal bundle
∃ Θ ; a G-invariant connection form on P :
such that

π∗ω = − dΘ curvature

π∗Φξ = Θ( ξP ) ∀ξ ∈ g ,

where ξP (u) = d
dt
|t=0 ( exp tξ · u ), lift of g-action to P .

We know that

ξP = ξP |horizontal + Φξ ∂

∂φ
, [Kostant]

i.e. the vertical component of ξP is Φξ. The horizontal component is defined
by π∗ξP = ξM .

7 Pre-quantization line bundle on A(Σ)

Proposition 7.1. (A, ω, J) : Hamiltonian G-manifold ,

ω(a, b) =
i

2π

∫
Σ

Tr(a ∧ b), ∀a, b ∈ TAA.

Jξ(A) =
i

2π

∫
Σ

Tr(FAξ), ∀ξ ∈ LieG.

Proof
In fact we have already seen that

• ω is a G-invariant symplectic form .
• LieG 3 ξ generates the fundamental vector field ξA(A) = dAξ on A ,
and (d̃ Jξ)A = idAξω. It rests to prove the equivariance:

JAdgξ(A) =
i

2π

∫
Σ

Tr(FA gξg
−1) =

i

2π

∫
Σ

Tr(g−1FAg ξ) =

=
i

2π

∫
Σ

Tr(Fg·A ξ) = Jξ(g · A).
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Proposition 7.2.
The Hamiltonian G-manifold (A, ω, J) is Pre-quantizable .

Proof
P : U(1)-principal bundle associated with L π−→M:

P = A× U(1)/G,

g · (A, c ) = ( g · A , c exp iW (g, A) ).

W (g, A) =
1

4π

∫
Σ

Tr(dg · g−1A ) + Γ(g).

Fundamental vector field ξP on P generated by the infinitesimal action
of ξ ∈ LieG is

(ξP)(A,z) = dAξ + Jξ(A)
∂

∂φ
. [Kostant]

Θ = π∗θ + dφ , θ given in (5.1)

Θ(A,c)(ξP) = Jξ(A)

= c
i

4π

∫
Σ

Tr(FAξ)

So

π∗Jξ = Θ(ξP ).

d̃Θ = π∗ d̃ θ = − π∗ω.

(A, ω, J) has the Pre-quantization (L,Θ).

8 Why H0(MG
J , Lk) are the space of general-

ized theta functions?

1. Consider the classic case: G = U(1). LetMU(1)
J be the moduli space

of holomorphic line bundles on the Riemann surface ΣJ of degree 0.

2. MU(1)
J is isomorphic to

Hom(π1(Σ), U(1)) ' Ȟ1(Σ, U(1)) ' H1(ΣJ ,O)/H1(Σ,Z)

a complex g-dimensional torus.
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3. Abel-Jacobi theorem:
MU(1)

J is isomorphic to

Cg/Λ : Jacobi variety of ΣJ

(See the addendum of this note if you have not yet studied the classic
divisor theory.)

4. Let L −→ MU(1)
J be the line bundle given by the Θ divisor over the

Jacobi variety.
Let
H0(MU(1)

J ,L) be the space of theta functions.

H0(MU(1)
J ,Lk) be the space of theta functions of level k.

Then
dim H0(MU(1)

J ,Lk) = kg .

independent of J .

The non-abelian analogy of the above is called generally Verlinde formula.
Let R = MSU(r)

J be the moduli space of stable holomorphic principal
G-bundle over Σ.

Let L be the pre-quantum line bundle over R.

We call
(i) H0(R ,Lk ): the space of ( non abelian ) theta functions of level k.
(ii) H0(R,L⊗k): The space of conformal blocks
(iii) Verlinde formula

dimC H0(R , Lk ) = ?
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9 Gerassimov-Witten’s Strategy for Verlinde

formula

Find a convenient description of the action of G on H0(MSU(r)
J ,Lk ).

1. A complex structure J on Σ gives a complex structure on A. In
fact it is enough to define the action of ∂A: (1, 0) component of dA :
Ω0(Σ, LieG) −→ Ω1(Σ, LieG).

The G action on A extends to an action of the complexified gauge
transformation group GC = C∞(Σ, GC).

∂A −→ g−1 ∂A g .

Then we introduce the space A/GC = R : the moduli space of stable
holomorphic principal G-bundle over ΣJ , written by the same notation
as A/G = R .

2. Sections over an open set U of R are the same as GC invariant sections
over π−1U ⊂ A, π : A −→ R.

Hence H0(R,Lk): the space of non-abelian theta functions at level k,
is ' to the G-invariant (or equivalently GC-invariant ) subspace T of
H0(A,Lk)

3. The projection operator Π : H0(A ,Lk ) −→ T is given by

s −→ Πs =
1

vol(G)

∫
G
Dg g∗s

where Dg: formal Haar measure on G.

We have
dimH0(R,Lk) = dim T = TraceΠ. (9.1)

4. Find the next kernel K(A,B; g) , A,B ∈ A for each g ∈ G:

K(A,B; g) is a section of the line bundle

p∗1(Lk)⊗ p∗2(L−k) −→ A×A ,

where pi : A×A −→ A are the projections, such that

g∗s(A) =

∫
DB K(A,B; g) s(B) s ∈ H0(A ,Lk ), (9.2)

DB is the Liouville measure on the symplectic space (A, ω).
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5.

TraceΠ = Trace

[
s −→ 1

vol(G)

∫
G
Dg g∗s

]
(9.3)

=
1

vol(G)

∫
G
DgDA K(A,A; g) . (9.4)

6. From (9.1), (9.2) and (9.3)

dimH0(R,Lk) =
1

vol(G)

∫
G
DgDA K(A,A; g)

7. The problem is to look for the kernel K(g, A,B).

8. Witten write the following formula of K(g, A,B).

K(A,B; g) = exp (−kI(g, A,B)

I(g, A,B) =
i

8π

∫
Σ

Tr g−1dg ∧ ∗g−1dg − Γ(g)

− i

2π

∫
σ

d2z Tr.(Azg
−1∂zg −Bz∂zgg

−1 +BzgAzg
−1

− 1

2
AzAz −

1

2
BzBz )

We shall follow in the next section ( unsatisfactory ) the explanation
by Witten of how to derive this formula. This is the procedure how to
relate a gauge field A ∈ A to the WZW action:

I(g) =
i

8π

∫
Σ

Tr g−1dg ∧ ∗g−1dg − Γ(g)
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10 WZW-model , GWZW-model , G/H model

1. WZW-model

Action functional of WZW model:

I(g) = i
8π

∫
Σ
Tr g−1dg ∧ ∗g−1dg− 1

12π

∫
B

Tr (dg̃ g̃−1)3 .

kinetic term + topological term: Γ(g)

Invariant under a conformal change of metric.

2. The partition function of the WZW-model:

Z = Z(k,G,Σ) =

∫
Dg exp(−ikI(g) )

3. GWZW-model : Gauging the WZW model means generalizing the
theory from the case g ∈Map(Σ, G) to the case where g is a section of
a bundle X −→ Σ with the fiber G and the structure group GL × GR

or H ⊂ GL ×GR.

Here (a, b) ∈ GL ×GR acts on G by g −→ agb−1. We note that I(g) is
invariant under GL ×GR.

4. [Problem] For a connection A of X −→ Σ , one aims to find a gauge
invariant functional I(g, A) such that

I(g, 0) = I(g) =
i

8π

∫
Σ

Tr g−1dg ∧ ∗g−1dg − Γ(g) ,

when X is trivial X = Σ×G.

5. G/H model

Gauge invariant extension of the 1st term is easy: We merely change d
to dA.

i

8π

∫
Σ

Tr g−1dg ∧ ∗g−1dg =⇒ i

8π

∫
Σ

Tr g−1dAg ∧ ∗g−1dAg

However Γ(g) has no gauge invariant extension unless one restrict to
an anomaly-free subgroup

H ⊂ GL ×GR
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and consider bundles X −→ Σ with structure group H.

H ⊂ GL ×GR: anomaly-free subgroup
def⇐⇒

TrL tt
′ = TrR tt

′, ∀t, t′ ∈ h = LieH, (10.1)

where TrL and TrR are the traces in gL and gR ( the adjoint represen-
tations of GL and GR viewed as H-modules ) respectively .

For anomally free H ⊂ GL ×GR,

I(g, A) = Γ(g)− i

4π

∑
i

∫
Σ

AiTr [Ti,Ldgg
−1 + Ti,Rdgg

−1]

− i

8π

∑
i,j

∫
Σ

Ai ∧ Aj Tr[· · · ] W (2.25)

The quantum field theories with Lagrangians
L(g, A) = kI(g, A), k ∈ N, are called G/H models.

6. G/G model

The diagonal embedding of G in GL ×GR is always anomally free and
we have G/G model:

I(g, A) = · · · W (2.27)

For a G/G model we have

dimH0(R,Lk) =
1

vol(G)

∫
G
DgDA K(A,A; g)

=
1

vol(G)

∫
G
DgDA exp(−kI(g, A)) . (10.2)
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11 The kernel K(A,B; g) - Witten page 14∼
The case H = GL ×GR is anomalous .

In this case (10.1) is not satisfied.
No gauge invariant G/H Lagrangian and no G/H quantum field theory,

i.e. one can not construct a gauge invariant action I(g, A) extending the
WZW action.

But one can find a best possible I(g, A) such that the violation of gauge
invariance is independent of g and of the conformal structure of Σ .

And the Witten’s answer is

K(A,B; g) = exp (−kI(g, A,B)

I(g, A,B) =
i

8π

∫
Σ

Tr g−1dg ∧ ∗g−1dg − Γ(g)

− i

2π

∫
σ

d2z Tr.(Azg
−1∂zg −Bz∂zgg

−1 +BzgAzg
−1

− 1

2
AzAz −

1

2
BzBz )

It is not gauge invariant but its change under a gauge transformation is
independent of g

?? It is related in a useful way to the geometry of prequantum line bundle
by an infinitesimal gauge transformation

δg = vg − gu , δA = −dAu, δB = −dBv

we have

δ I(g, A,B) =
1

4π

∫
Σ

Tr [udA− vdB] .
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12 Try to derive the formula for I(g;A,B); yet

incomplete

I think if we repeat the argument from section 1 to section 7 for the group
HL ×GR we would have the extension K(g;A,B) of the transition function
K(g, A) = exp iI(g, A).

Let H be a subgroup of G. HL ⊂ GL.
The action of HL ×GR on the WZW symmetry group G is not faithful. In
fact let Z(G) be a center of G diagonally embedded in GL×GR. Then Z(G)
acts trivially: (a, a) · g = aga−1 = g.

F = HL ×GR/Z with Z = H ∩ Z(G) acts faithfully.

• P −→ Σ : F -principal bundle:
where the right action of F on P is given by

u · (a, b) = a−1ub .

The left action of F on HL, GR, F is

(a, b) · g = agb−1.

Then the adjoint bundles are defined by

AdP = P ×F F .

AdLP = P ×F HL , AdRP = P ×F GR

The groups of gauge transformations are

F = Γ(Σ, AdP ) = HL ⊗ GR ,

HL = Γ(Σ, AdLP ) , GR = Γ(Σ, AdRP ) .

If P is trivial , F = C∞(Σ, F ),

HL = C∞(Σ, HL) , GR = C∞(Σ, G)

Infinitesimal gauge transformation group:

LieF = LieHL ⊕ LieGR .

A: the space of (LieHL)-valued connections.
B: the space of (LieGR)-valued connections.
C = A× B.

18



1. C is a symplectic manifold:

ω ((a1, b1) , (a2, b2)) =
1

2π

∫
Σ

Tr a1 ∧ a2 −
1

2π

∫
Σ

Tr b1 ∧ b2 .

2. The infinitesimal action of ζ = (ξ, η) ∈ LieF on C is given by

ζC((A,B)) = ξA(A) + ηB(B) = −dAξ + dBη .

3. The moment map

Jζ((A,B)) = JξL(A)− JηR(B)

JξL(A) =
−1

2π

∫
Σ

Tr FA ξ, JηR(B) =
−1

2π

∫
Σ

Tr FB η

d̃ JξL(a) = ω(a,−dAξ), d̃ JηR(b) = ω(b, dBη)

4. L-Chern-Simons and R-Chern-Simons

Not yet verified

5. L-Polyakov=Wiegner and R-Polyakov-Wiegner.

=⇒ 2-cocycles ( Transition functions ) of

Line bundles LL −→ AL/HL, LR −→ BR/GR
Line bundle over AL × BR/HL × GR
Not yet verified

6. I(g;A,B) =???

Not yet verified
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13

We have explained or tried to explain section 2 of Witten’s paper till page 16,
to give the Verlinde formula by the kernel functionK(g;A,B) = exp I(g;A,B).
The following parts of section 2;

[ W-p.17: Inclusion of marked points] and
[ W-p.19: Relation to Verlinde algebra]
are easy to comprehend.
——— Here is an outline:

1. Let ρ be a representation of a compact Lie group G in a Hilbert space
H. The projection operator onto the G-invariant subspace of H is

Π =
1

vol(G)

∫
G

Dg ρ(g), (13.1)

where Dg an invariant measure on G. The trace of Π is the multiplicity
with which the trivial representationof G appears in H.

2. Let V be a representation of G;

G 3 g 7−→ ρV (g) ∈ Aut(V ).

Let V be the complex conjugate representation of G. Then the multi-
plicity with which V appears in H is the same as the multiplicity with
which the trivial representation appears in H ⊗ V . So we define the
projection ΠV onto G-invariant subspace of H⊗ V :

ΠV =
1

vol(G)

∫
G

Dg ρ(g)⊗ ρV (g).

3. The multiplicity with which V appears in H is

mult(V ) = TraceΠV . (13.2)

Apply this to the gauge transformation group G of the principal
bundle P −→ Σ, and H = H0(A,L⊗k).

Take a point x ∈ Σ. For any representation ρV : G 7−→ Aut(V ) of G we
have the representation ρx,V = ρV ◦ evx of G, where

evx : G 3 g −→ g(x) ∈ G.

Pick points xi; i = 1, · · · , s and representations Vi; i = 1, · · · , s, and let
V = ⊗iVi. G acts on V by

ρV = ⊗i ρxi,Vi .
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The conjugate is ρV = ⊗i ρxi,V i .
• Path integral representation of the multiplicity with which V appears

in H = H0(A,L⊗K).

1.
Tr [ρ(g)⊗ ρV (g)] = Tr ρ(g)⊗ Tr ρV (g)

We know

Tr ρ(g) =

∫
DAK(A,A; g)

with K(A,B; g) given by the formula (10.2). On the other hand

Tr ρV (g) = Πi Tr ρV ig(xi).

2. From (13.2),

mult(V ) = TrΠV =
1

vol(G)

∫
DgDATr (ρ(g)⊗ ρV )

=
1

vol(G)

∫
DgDA exp(−kI(g, A)) · ΠiTrρV ig(xi) (13.3)

This is the correlation function

〈ΠiTrρV ig(xi)〉 (13.4)

in the GWZW model.

• Relation to the Verlinde algebra

1. Let T be the maximal torus of G. For any representation V of G there
is a line bundle S −→ G/T such that H0(G/T,S) ' V .

Let x1, · · · , xs be marked points on Σ. We consider the enlarged con-
nection space;

Â = A× Πs
i=1 (G/T )i ,

(G/T )i means that the gauge transformation group G acts on (G/T )
by composition of evxi with the natural action of G on G/T :
ρxi,V = ρG/T ◦ evxi : G 7−→ Aut(G/T ).

Given irreducible representations Vi of G , let Si be a line bundle over
(G/T )i such that H0((G/T )i,Si) ' V i . Let V = ⊗i Vi.
Define a line bundle L̂ −→ Â by

L̂ = L⊗k ⊗ (⊗iSi),

Then
H0(Â, L̂) = H0(A,L⊗k)⊗ (⊗iV i)
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2. The multiplicity of (13.3) is equal to the dimension of the G-invariant

subspace of H0(Â, L̂).

mult(V ) = TrΠV = dim
(

(H0(Â, L̂) )G
)
.

3. Let R be the quotient of A by the complexified gauge transformation
group GC; R is the moduli space of stable holomorphic bundles over Σ
with parabolic structure ( i.e. the structure group is reduced to T at
xi’s ).

GC-invariant line bundles descends to a line bundle, written by the
same letter L, whose sections over R are G invariant sections of L̂ over
A. So we have

H0(R̂, L̂) ) = H0(Â, L̂) )G

The left hand is the space of non-abelian theta functions

4.

dim H0(R̂, L̂) ) = 〈ΠiTrρV ig(xi)〉

= correlation functional of GWZW; (13.4)
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14 The Verlinde Algebra

Given a level k, the loop group LG of the compct Lie group G has a finite
number of isomorphism classes of unitary representations; the space W of
highest weights is a distinguished list of isomorphism classes Vα, α ∈ W .

Let X be the Z module freely generated by the Vα.
We have a natural metric over X; g(Vα, Vβ) = 1 if Vα = V β , and = 0

otherwise.
a multiplication law

Vα · Vβ =
∑
γ

Nγ
αβ Vγ .

can be defined by giving a cubic form Nαβγ =
∑

δ gγδN
δ
αβ. Nαβγ is defined as

follows:
Take a genus zero surface with three marked points xi, i = 1, 2, 3, labelled

by integrable representations Vαi , αi ∈ W . As we have investigated hitherto

the choice of αi, i = 1, 2, 3, and the level k determine a moduli space R̂ of
holomorphic bundles with parabolic structure and a line bundle L̂ over R̂.
The structure constants of the Verlinde algebra are

Nα1,α2,α3 = dim H0(R̂, L̂). (14.1)

In other words;

Nα1,α2,α3 = 〈Π3
i=1 TrρV αi

g(xi) 〉 correlation functional of GWZW (14.2)
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15 Addendum 1: A comprehensive study of

Theta Divisor

15.1 divisor

M : a compact complex manifold.
a divisor is a formal linear combination

D =
∑

ai Vi , ai ∈ Z, Vi : irreducible hypersurface.

Vi ∩ Uα = {giα = 0}, giα ∈ O(Uα) ; defining function of Vi in Uα.

Let V be an irreducible hypersurface, p ∈ V and g a defining function
for V near p: i.e. g is holomorphic near p and V = {g = 0} near p. For a
horomorphic function f , ord fV,p is the largest integer a such that f = gah,
h ∈ Op. For the defining functions giα, giβ of Vi over Uα ∩ Uβ, we have
evidently ord giβ = ord giα.

Given a divisor D =
∑

ai Vi , ai ∈ Z, we have a local family of meromor-
phic functions

fα = Πi (giα)ai ∈M∗(Uα),

It follows immediately that fα ≡ fβ modO∗(Uα ∩ Uβ). Then a divisor is a
global section of the quotient sheaf M∗/O∗

Conversely given a local family of meromorphic functions {fα} such that
gαβ = fα

fβ
∈ O∗(Uα ∩ Uβ) we have ordV fα = ordV fβ and we can associate the

divisor D =
∑

V ordV (fα) · V . Thus
(i)

a divisor is a global section of M∗/O∗.

Div(M) = H0(M,M∗/O∗ )

D =
∑

irreduc. hypersurf. V ,V ∩ Uα 6= φ

ordV (fα) · V ;

(ii)

gαβ =
fα
fβ
∈ O∗(Uα ∩ Uβ) =⇒ gαβgβγgγα = 1 on Uα ∩ Uβ ∩ Uγ

=⇒ a line bundle L = [D] with transition function gαβ.

(iii)
{fα ∈ M∗(Uα)}α local data; fα = gαβfβ ,
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=⇒ a meromorphic section sf of L = [(s)]

In summary we have shown that L is the line bundle associated to a di-
visor D;L = [D], if and only if ∃ s ∈ Γ(M,M∗(L)) such that (s) = D.

D =
∑

ai Vi is said to be effective; D ≥ 0 iff ai ≥ 0.
Then L is the line bundle of an effective divisor D;L = [D], if and only

if ∃ s ∈ Γ(M,O∗(L)) such that (s) = D.

15.2 Abel-Jacobi

Σ: a compact Riemann surface of genus g.
δ1, δ2, · · · , δ2g: 1-cycles on Σ; a basis for H1(Σ,Z).
δi, δi+g intersect once positively and not intersect other δj for j 6= i, i+ g.
ω1, ω2, · · · , ωg; a basis of holomorphic 1-forms; generator of H0(Σ,Ω1).
Put

Πi =


∫
δi
ω1

·
·∫

δi
ωg

 ∈ Cg , i = 1, 2, · · · , 2g .

Π = (Π1, · · · ,Π2g) is the period matrix.

Λ = ZΠ1 + · · · + ZΠ2g ⊂ Cg ,

forms a lattice.
J (Σ) = Cg/Λ is called a Jacobi variety of Σ .

Theorem 15.1 (Abel).
Let Div0(Σ) be the divisors on Σ of order 0. Let µ be the abelian sum:

µ : Div0(Σ) −→ J (Σ)

D =
∑

(pλ − qλ) −→
(∑∫ pλ

qλ

ω1, · · · ,
∑∫ pλ

qλ

ωg

)
mod Λ

Then D = (f) for a meromorphic function on Σ if and only if

µ(D) = 0 mod Λ (15.1)

Pic0(Σ): the group of divisors of degree 0 in Σ modulo linear equivalence;

D ∼ D′ ⇐⇒ ∃f ∈M∗(Σ), D = D′ + (f) .
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(15.1) says that µ factors

Div0(Σ) −→ Pic0(Σ)
µ̃−→ J (Σ)

Actually µ̃ is an isomorphism.

Theorem 15.2 (Jacobi). Let Σ be a Riemann surface of genus g and p0 ∈ Σ.
For any λ ∈ J (Σ) we can find g points p1, · · · , pg ∈ Σ such that

µ

(∑
i

(pi − p0)

)
= λ

i.e. for any vector λ ∈ Cg we can find p1, · · · , pg ∈ Σ and paths αi from p0

to pi such that ∑
i

∫
αi

ωk = λk , ∀k.

15.3 Theta divisor

Let V ' Cn be a vector space and Λ ⊂ Cn be a Z-lattice. The quotient
M = V/Λ becomes a compact complex manifold called an Abelian variety.

Let L = V ×C/Λ be the line bundle corresponding to a divisor Θ ⊂M ;
L = [Θ].

There corresponds a global holomorphic section of the bundle L = [Θ]
which is also called a theta divisor and an entire holomorphic function θ (
called a theta function ) on V ' Cn satisfying certain equation according to
Λ.

In the following we consider the case M = J (ΣJ) = Cg/Λ : Jacobi
variety of the Riemann surface Σ, and L = [Θ] is the line bundle given by
the theta divisor Θ on J (ΣJ).

Theorem 15.3.

1. H0(J (ΣJ) , L ) ' C: the space of classical theta functions.

2. dim H0(J (ΣJ) , Lk ) = kg: the space of classical theta functions of
level k.
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16 Addendum 2: Geometric pre-quantization

of the moduli space over 4-dim, manifolds

1. M : 4-dimensional manifold with boundary ∂M .
G = SU(n), n ≥ 2 , LieG = su(n).
P = M ×G, or a trivial G-principal bundle.

2. A(M): Space of ( irredusuble ) connections on P .
A(M) is an infinite dimensional affine space modeled by Ω1(M, LieG).
Hence A+ a ∈ A for ∀a ∈ Ω1(M, LieG).

3.

FA = dA+
1

2
[a,A] curvature

4. The group of gauge transformations :

G(M) = Aut0(P ) = C∞(M, G )

The group of gauge transformations that are identity on the boundary:

G0(M) = {g ∈ G(M); g|∂M = Id} .

G(M) 3 g acts on A ∈ A(Σ) by

g · A = g−1Ag + g−1dg .

5.
M = A(M)/G0(M), the moduli space of connections.

6.
A[ = {A ∈ A(M) : FA = 0 }, flat connections.

M[ = A[/G0, the moduli space of flat connections.

M[ ∼= Hom (π1(M), G) /G .

bijective correspondense. Hom (π1(M), G) /G is the moduli space of
representations of π1(M) in the group G modulus the conjugate rep-
resentations .

27



1. For each A ∈ A we define the following skew-symmetric bilinear form
on TAA:

ωA(a, b) = ω0
A(a, b) + ω′A(a, b),

ω0
A(a, b) =

1

8π3

∫
M

Tr[(a ∧ b− b ∧ a) ∧ FA],

ω′A(a, b) = − 1

24π3

∫
∂M

Tr[(a ∧ b− b ∧ a) ∧ A],

for a, b ∈ TAA.

Theorem 16.1. ω is a G0-invariant closed 2-form on A.

2. There is a notion of Hamiltonian G-manifold also for a presymplectic
structure ( degenerate ω), [Guillemin et al.]: Let X be a manifold with
a smooth actionon it of a Lie group G. Let σ be a closed 2-form on
X. A moment map Φ : X 7−→ (LieG)∗ is a map that is equivariant
withrespect to the G-action on X and the coadjoint action on (LieG)∗

such that Φξ =< φ, ξ > satisfies

dΦξ = iξXσ, ∀ξ ∈ LieG

Definition 16.1. (X, σ,Φ) is a Hamiltonian G-manifold and we say
that the action of G on (X, σ,Φ) a Hamiltonian action.

3.

Theorem 16.2. The action of G0 on (A, ω,Φ) is a Hamiltonian action
and the corresponding moment map is given by

Φ : A 7→ (LieG0)∗ = Ω4(M,LieG) : A 7→ F 2
A ,

〈Φ(A), ξ〉 = Φξ(A) =
1

8π3

∫
M

Tr[F 2
Aξ ], ∀ξ ∈ LieG0

4. I constructed a geometric pre-quantization, that is, there is a hermitian
line bundle with connection over the moduli space of flat connections
M[:

L π7−→M[,

and the curvature of the connection form θ is π∗ω.
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The moduli space by the action of total gauge G(M); A/G is also inves-
tigated. The latter has a deep relation with the 4-dimensinal generalization
of WZW-model.

T.Kori: Chern-Simons pre-quantizations over four-manifolds, D.G.A 29(2011),p.670-
684.

T.Kori; Four-dimensional Wess-Zumino-Witten actions, J.G.Ph.47(2003),235-
258.
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