Multiplicative convexity

Eckhard Meinrenken

Waseda University, June 2017
Plan

1. Additive and multiplicative eigenvalue inequalities
2. Hamiltonian convexity
3. q-Hamiltonian convexity
4. Ingredients of the proof
5. twisted q-Hamiltonian convexity
For self-adjoint matrix $A \in \text{Mat}_\mathbb{C}(n)$, let $a_1 \geq \cdots \geq a_n$ be its ordered set of eigenvalues. Let $a = (a_1, \ldots, a_n)$ be the eigenvalue tuple.

Theorem (Horn Convexity)

The set of all $(a, b, c) \in \mathbb{R}^{3n}$ such that there exists self-adjoint matrices A, B, C with ordered eigenvalue tuples a, b, c, and satisfying

$$A + B + C = 0,$$

is a convex polyhedral cone.

The eigenvalue inequalities giving the faces of this polyhedron were conjectured by Horn (1962), and proved by Klyachko (1998).
Multiplicative Horn Convexity

For $A \in \text{SU}(n)$, write eigenvalues as $\exp(2\pi \sqrt{-1}a_i)$ where

$$a_1 \geq \cdots \geq a_n \geq a_1 - 1, \quad \sum_{i=1}^{n} a_i = 0$$

Define the eigenvalue tuple $a = (a_1, \ldots, a_n)$.

Theorem

The set of all $(a, b, c) \in \mathbb{R}^{3n}$ such that there exists special unitary matrices A, B, C with eigenvalue tuples a, b, c, and satisfying

$$ABC = I,$$

is a convex polytope.

(M-Woodward, 1997.) The inequalities giving the faces of this polytope were obtained by Agnihotri-Woodward (1998), Belkale (2001).
The Jeffrey-Weitsman polytope describes conjugacy classes of \(A_1, A_2, A_3 \in SU(2) \) with \(A_1 A_2 A_3 = I \).
• G compact, simply connected Lie group, $\mathfrak{g} = \text{Lie}(G)$,
• T maximal torus, $\mathfrak{t} = \text{Lie}(T)$,
• $\mathfrak{t}_+ \subset \mathfrak{t}$ positive Weyl chamber,
• $\mathcal{A} \subset \mathfrak{t}_+$ Weyl alcove.

$$\ker(\text{ad}_\xi) = \mathfrak{t}$$

$$\ker(e^{\text{ad}_\xi} - 1) = \mathfrak{t}$$
There is a quotient map

\[p: \mathfrak{g} \to \mathfrak{t}_+ \]

with fibers the adjoint orbits, \(\mathcal{O}_\xi = \text{Ad}_G(\xi) \).

Theorem

The set

\[\{(\xi_1, \ldots, \xi_r) \in \mathfrak{t}_+ \times \cdots \times \mathfrak{t}_+ | \exists \zeta_i \in \mathcal{O}_{\xi_i}: \zeta_1 + \cdots + \zeta_r = 0\} \]

is a **convex polyhedral cone**.

Determination of facets: Berenstein-Sjamaar (2000), ...
For G compact, simple, simply connected, there is a quotient map

$$p : G \to \mathcal{A}$$

with fibers the conjugacy classes, $C_\xi = \text{Ad}_G(\exp \xi)$.

Theorem

The set

$$\{ (\xi_1, \ldots, \xi_r) \in \mathcal{A} \times \cdots \times \mathcal{A} \mid \exists g_i \in C_{\xi_i} : g_1 \cdots g_r = e \}$$

is a convex polytope.

(M-Woodward (1997).)

One gets these convexity results as special cases of convexity theorems for (quasi-)Hamiltonian spaces.
Definition

A Hamiltonian G-space (M, ω, Φ) is given by invariant symplectic 2-form $\omega \in \Omega^2(M)$ and equivariant moment map $\Phi: M \to g^*$, satisfying

$$\iota(\xi_M)\omega = -d\langle \Phi, \xi \rangle.$$

Examples:

a) Coadjoint orbits $\mathcal{O} \subset g^*$, with Φ the inclusion.

b) Cotangent bundles T^*G, with $\Phi: T^*G \to g^*$ left trivialization.
Hamiltonian convexity

Quotient map $p : g^* \rightarrow t^*_+$ with fibers the coadjoint orbits.

Theorem (Hamiltonian convexity)

Let (M, ω, Φ) be a compact, connected Hamiltonian G-space. Then

1. the fibers of Φ are connected, and
2. the image $p(\Phi(M)) \subseteq t^*_+$

is a convex polytope.

Hamiltonian convexity

Remarks on convexity theorem

- For $G = T$, it just says $\Phi(M) \subset t^*$ is a convex polytope.
- Generalizes to non-compact Hamiltonian spaces with proper moment map $\Phi: M \to g^* \rightsquigarrow$ convex polyhedron.
- Horn cone is moment polyhedron for

$$ (T^* G \times \cdots \times T^* G) // G. $$
Let \(\cdot \) invariant inner product on \(\mathfrak{g} \), defining the Cartan 3-form.

\[
\eta = \frac{1}{12} \theta^L \cdot [\theta^L, \theta^L] \in \Omega^3(G).
\]

Definition (Alekseev-Malkin-M)

A \(q \)-Hamiltonian \(G \)-space \((M, \omega, \Phi)\) with \(G \)-valued moment map is given by invariant \(\omega \in \Omega^2(M) \) and equivariant \(\Phi: M \to G \), satisfying

1. \(\iota(X_M)\omega = -\frac{1}{2} \Phi^*(\theta^L + \theta^R) \cdot X \)
2. \(d\omega = -\Phi^*\eta \)
3. \(\ker(\omega) \cap \ker(T\Phi) = 0 \).

Examples:

a) Conjugacy classes \(\mathcal{C} \subset G \), with \(\Phi \) the inclusion.

b) Moduli spaces of flat connections, \(\Phi = \) boundary holonomy

\[
M(\Sigma^r_g) \xrightarrow{\Phi} G^r
\]
For G simply connected, have quotient map $p: G \to \mathcal{A}$ with fibers the conjugacy classes.

Theorem (q-Hamiltonian convexity)

Let (M, ω, Φ) be a connected q-Hamiltonian G-space. Then

1. the fibers of Φ are connected, and
2. the image $p(\Phi(M)) \subset \mathcal{A}$ is a convex polytope.

This is due to M-Woodward (1997), in terms of Hamiltonian loop group actions.
Remarks:

- Taking $M = M(\Sigma^1_1)$, get that commutator map
 \[\Phi: G \times G \to G, \quad (a, b) \mapsto aba^{-1}b^{-1} \]
 has connected fibers. (But Φ is surjective here.)

- Multiplicative Horn polytope arises from
 \[M = M(\Sigma^r_0) \xrightarrow{\Phi} G^r. \]
Proof of (q-)Hamiltonian convexity

We’ll follow Lerman-M-Tolman-Woodward 1998.

Let \((M, \omega, \Phi)\) be a compact connected Hamiltonian \(G\)-space.

Lemma

\[\exists \text{ unique face } \sigma \text{ of } t^*_+ \text{ such that } (p \circ \Phi)^{-1}(\sigma) \subset M \text{ is dense.} \]

Definition

\(Y = \Phi^{-1}(\sigma)\) is called the \text{principal cross-section}.

1. \(Y\) is a smooth, connected submanifold of \(M\).
2. \(Y\) is a Hamiltonian \(T\)-space, with \(\Phi_Y = \iota_Y^* \Phi, \omega_Y = \iota_Y^* \omega\)
3. \(\Phi_Y\) proper as a map to \(\sigma \subset t^*\).
4. \(\Phi_Y(Y) = p(\Phi(M))\).

Similar for q-Hamiltonian spaces, with \(\mathcal{A}\) replacing \(t^*_+\).
Proof of (q-)Hamiltonian convexity

One combines the ‘principal cross-section’ with the following version of abelian convexity:

Let \((Y, \omega_Y, \Phi_Y)\) be a connected Hamiltonian \(T\)-space, with moment map

\[\Phi_Y : Y \rightarrow t^* \]

valued in convex subset \(U \subset t^*\) and proper as a map to \(U\). Then

1. the fibers of \(\Phi_Y\) are connected, and
2. \(\Phi_Y(Y) \subset t^*\) is the intersection of \(U\) with a convex polyhedral set.

Proved using local normal forms and ‘local-global’ arguments.

(Condeveaux-Dazord-Molino, Hilgert-Neeb-Planck, LMTW, Sjamaar,..).

Conclude convexity properties of \(p(\Phi(M)) = \Phi_Y(Y)\).
Twisted conjugation

Given a group automorphism $\kappa \in \text{Aut}(G)$, define the twisted conjugation action

$$\text{Ad}_g^{(\kappa)}(a) = g a \kappa(g^{-1}).$$

Its orbits are the twisted conjugacy classes.

Example

If $G = \text{SU}(n)$, then $\kappa(g) = g^\top$ is an automorphism, so we’re considering the action

$$A \mapsto g A g^\top.$$

Example

If U is a disconnected compact Lie group, with identity component $G = U_0$, then the U-conjugacy classes are disjoint unions of twisted conjugacy classes of G.
Twisted conjugation

Example

Every automorphism of the Dynkin diagram defines an automorphism of G, given on Chevalley generators of \mathfrak{g}^C by

$$h_i \mapsto h_i', \quad e_i \mapsto e_i', \quad f_i \mapsto f_i'.$$

Examples of diagram automorphisms:
Remark:

1. If $\kappa' = \text{Ad}_c \circ \kappa$, then the κ-twisted and κ'-twisted conjugation actions are related by right translation r_c.
2. $\text{Aut}(G)/\text{Inn}(G) \cong \text{diagram automorphisms}$.

Example

If $G = \text{SU}(n)$, then $\kappa(g) = g^\top$ does not come from a Dynkin diagram automorphism, but $\text{Ad}_c \circ \kappa$ with

$$c = \begin{pmatrix} 0 & \ldots & 0 & 1 \\ 0 & \ldots & 1 & 0 \\ \vdots & \ddots & \vdots \\ 1 & \ldots & \ldots & 0 \end{pmatrix}$$

does.
If κ is a diagram automorphisms, then it preserves T and t_+.

There is an alcove $\mathcal{A}(\kappa) \subset t^\kappa$ and a quotient map

$$p^{(\kappa)} : G \rightarrow \mathcal{A}(\kappa)$$

with fibers the twisted conjugacy classes

$$C^{(\kappa)}_\xi = \text{Ad}^{(\kappa)}_G(\exp \xi).$$

Note: $\mathcal{A}(\kappa)$ is smaller than the alcove for (G^κ, T^κ).
Let $\kappa_1, \ldots, \kappa_r$ diagram automorphisms with $\kappa_r \cdots \kappa_1 = 1$. Have quotient maps

$$p^{(\kappa_i)} : G \to A^{(\kappa_i)}$$

with fibers the κ_i-twisted conjugacy classes.

Theorem (M., 2016)

The set

$$\{ (\xi_1, \ldots, \xi_r) \in A^{(\kappa_1)} \times \cdots A^{(\kappa_r)} | \exists g_i \in C^{(\kappa_i)}_{\xi_i} : g_1 \cdots g_r = e \}$$

is a convex polytope.

Defining inequalities ??? (I don’t know, in general.)
Let $\eta = \frac{1}{12} \theta^L \cdot [\theta^L, \theta^L]$. Write $G_\kappa := G$, as a G-manifold under twisted conjugation.

Definition

A quasi-Hamiltonian G-space (M, ω, Φ) with G_κ-valued moment map is given by invariant $\omega \in \Omega^2(M)$ and equivariant $\Phi: M \to G_\kappa$, satisfying

1. $\iota(X_M)\omega = -\frac{1}{2} \Phi^*(\theta^R \cdot X + \theta^L \cdot \kappa(X))$
2. $d\omega = -\Phi^*\eta$
3. $\ker(\omega) \cap \ker(T\Phi) = 0$.

Eckhard Meinrenken

Multiplicative convexity
Basic examples of spaces with $G\kappa$-valued moment maps:

- Twisted conjugacy classes
- Twisted moduli spaces on surfaces with boundary
- Products (‘fusion’)

If $\kappa' = \text{Ad}_c \circ \kappa$, get $G\kappa'$-valued moment map

$$\Phi' = \Phi_c.$$

\Rightarrow Enough to consider diagram automorphisms.
Let $\kappa \in \text{Aut}(G)$ be a diagram automorphism.

Theorem

Let (M, ω, Φ) be a q-Hamiltonian space with G_κ-valued moment map. Then the set of twisted conjugacy classes appearing in $\Phi(M)$ form a convex polytope

$$\Delta = p^{(\kappa)}(\Phi(M)) \subset t^\kappa.$$

The proof is similar to the untwisted case; uses ‘cross-sections’.

The result about products of twisted conjugacy classes follows by applying this to a suitably twisted moduli space of the r-hold sphere.
Thanks.