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© Additive and multiplicative eigenvalue inequalities
@ Hamiltonian convexity

© g-Hamiltonian convexity

@ Ingredients of the proof

@ twisted g-Hamiltonian convexity
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Horn Convexity

For self-adjoint matrix A € Matc(n), let a; > --- > a, be its
ordered set of eigenvalues. Let a = (a1,...,an) be the eigenvalue
tuple.

Theorem (Horn Convexity)

The set of all (a, b, c) € R3" such that there exists self-adjoint
matrices A, B, C with ordered eigenvalue tuples a, b, c, and
satisfying

A+B+C=0,

is a convex polyhedral cone.

The eigenvalue inequalities giving the faces of this polyhedron were
conjectured by Horn (1962), and proved by Klyachko (1998).
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Multiplicative Horn Convexity

For A € SU(n), write eigenvalues as exp(27+y/—1a;) where
n
; alZ"'Zanal_la ZQ;ZO
i=1
Define the eigenvalue tuple a = (a1, ..., ap).

Theorem

The set of all (a, b, c) € R3" such that there exists special unitary
matrices A, B, C with eigenvalue tuples a, b, c, and satisfying

ABC = I,

is a convex polytope.

(M-Woodward, 1997.) The inequalities giving the faces of this
polytope were obtained by Agnihotri-Woodward (1998), Belkale
(2001).



Multiplicative Horn Convexity

The Jeffrey-Weitsman polytope describes conjugacy classes of
A1, A, Az € SU(2) with AjA>A3 = /.
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General compact groups: Notation

e G compact, simply connected Lie group, g = Lie(G),
e T maximal torus, t = Lie(T),

e t; C t positive Weyl chamber,

o A C t; Weyl alcove.

s

{5 | ker(e®de — 1) = t}

{€ | ker(ade) = t}
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Sums of adjoint orbits

There is a quotient map

p:g—ty

with fibers the adjoint orbits, O = Adg(&).

The set

{(517"')§r)€t+><"'><f+‘ 3<’€O§:<]—++Cr:0}

is a convex polyhedral cone.

Determination of facets: Berenstein-Sjamaar (2000), ...
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Products of conjugacy classes

For G compact, simple, simply connected, there is a quotient map
p: G—2

with fibers the conjugacy classes, C¢ = Adg(exp ).

The set

{1, &) €AX - x A Jgi €Ci g1+ -8 = €}

is a convex polytope.

(M-Woodward (1997).)

Determination of facets: Teleman-Woodward (1999).
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One gets these convexity results as special cases of convexity
theorems for (quasi-)Hamiltonian spaces.
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Hamiltonian convexity

Definition

A Hamiltonian G-space (M, w, ®) is given by invariant symplectic
2-form w € Q?(M) and equivariant moment map ®: M — g*,
satisfying

L(&M)w = _d<¢a £>

Examples:
a) Coadjoint orbits O C g*, with ® the inclusion.

b) Cotangent bundles T*G, with ®: T*G — g* left
trivialization.
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Hamiltonian convexity

Quotient map p: g* — t} with fibers the coadjoint orbits.

Theorem (Hamiltonian convexity)

Let (M,w,®) be a compact, connected Hamiltonian G-space.
Then

@ the fibers of ® are connected, and

@ the image
p(&(M)) C ¢,

is a convex polytope.

G abelian: Atiyah (1982), Guillemin-Sternberg (1982).
G non-abelian: Guillemin-Sternberg (1983), Kirwan (1984).
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Hamiltonian convexity

Remarks on convexity theorem
@ For G =T, it just says ®(M) C t* is a convex polytope.

@ Generalizes to non-compact Hamiltonian spaces with proper
moment map ®: M — g* ~» convex polyhedron.

@ Horn cone is moment polyhedron for

(T"Gx---x T*"G)/G.
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quasi-Hamiltonian convexity
Let - invariant inner product on g, defining the Cartan 3-form.

1
n= EeL - [6, 64 € Q3(6).

Definition (Alekseev-Malkin-M)
A g-Hamiltonian G-space (M,w, ®) with G-valued moment map is
given by invariant w € Q?(M) and equivariant ®: M — G,
satisfying

Q (Xy)w = —30*(0- +6F) - X

Q dw=—-0*

Q ker(w) Nker(T®) =0.

Examples:
a) Conjugacy classes C C G, with ® the inclusion.
b) Moduli spaces of flat connections, ® = boundary holonomy

M(z5) -2 G
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g-Hamiltonian convexity

For G simply connected, have quotient map p: G — 2 with fibers
the conjugacy classes.

Theorem (g-Hamiltonian convexity)
Let (M,w,®) be a connected q-Hamiltonian G-space. Then
@ the fibers of ® are connected, and

© the image
p(S(M)) C 2

is a convex polytope.

This is due to M-Woodward (1997), in terms of Hamiltonian loop
group actions.
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g-Hamiltonian convexity

Remarks:

o Taking M = M(X1), get that commutator map
®: Gx G — G, (a,b) — abalb!

has connected fibers. (But @ is surjective here.)

@ Multiplicative Horn polytope arises from

M= M(Z5) -2 G".
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Proof of (g-)Hamiltonian convexity

We'll follow Lerman-M-Tolman-Woodward 1998.

Let (M,w, ®) be a compact connected Hamiltonian G-space.

3 unique face o of t%, such that (po ®)~*(c) C M is dense.

Definition

Y = ®~1(0) is called the principal cross-section.

@ Y is a smooth, connected submanifold of M.
@ Y is a Hamiltonian T-space, with &y =y, ®, wy = 1Jw
© oy proper as a map to o C t*.

Q Oy (Y) = p(®(M)).

Similar for g-Hamiltonian spaces, with 2 replacing t, .
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Proof of (g-)Hamiltonian convexity

One combines the ‘principal cross-section’ with the following
version of abelian convexity:

Let (Y,wy,®y) be a connected Hamiltonian T-space, with
moment map
by Y — t*
valued in convex subset U C t* and proper as a map to U. Then
@ the fibers of ®y are connected, and

@ oy (Y) C t* is the intersection of U with a convex polyhedral
set.

Proved using local normal forms and ‘local-global’ arguments.
(Condeveaux—Dazord—Molino, Hilgert-Neeb-Planck, LMTW, Sjamaar,..).

Conclude convexity properties of p(®(M)) = dy(Y).
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Twisted conjugation

Given a group automorphism x € Aut(G), define the twisted
conjugation action

Ad{(a) = g ar(g ™).

Its orbits are the twisted conjugacy classes.

If G =SU(n), then r(g) = g is an automorphism, so we're
considering the action

A—gAg'.

If U is a disconnected compact Lie group, with identity component
G = Up, then the U-conjugacy classes are disjoint unions of
twisted conjugacy classes of G.
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Twisted conjugation

Every automorphism of the Dynkin diagram defines an
automorphism of G, given on Chevalley generators of g€ by

hi'_>hi’7 e — &y, f;'_>f;’

Examples of diagram automorphisms:
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Diagram automorphisms

Remark:

Q If K" = Ad. ok, then the k-twisted and x/-twisted conjugation
actions are related by right translation rc.

@ Aut(G)/Inn(G) = diagram automorphisms.

Example

If G =SU(n), then r(g) = g" does not come from a Dynkin
diagram automorphism, but Ad. ox with

0 0 1
0 1 0
€= i
1 0

does.
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Twisted conjugation

If k is a diagram automorphisms, then it preserves T and t,.

There is an alcove A(¥) C ¢ and a quotient map
p): G — Al

with fibers the twisted conjugacy classes

Céﬁ) = Ad(GH) (exp&).

Note: (%) is smaller than the alcove for (G*, T*).
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Products of twisted conjugacy classes

Let x1,..., K, diagram automorphisms with x,--- k1 = 1. Have
quotient maps
pli): G — )

with fibers the k;-twisted conjugacy classes.

Theorem (M., 2016)

The set
{(er, ... &) €A x| Ig e 8 gy - gy = &}

is a convex polytope.

Defining inequalities 7?7 (I don't know, in general.)
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Twisted quasi-Hamiltonian spaces

Let n = 50" - [0%,0%]. Write Gk := G, as a G-manifold under
twisted conjugation.

Definition

A quasi-Hamiltonian G-space (M, w, ®) with Gk-valued moment
map is given by invariant w € Q?(M) and equivariant
®: M — Gk, satisfying

Q ((Xy)w = —30*(0F - X + 0L - k(X))

Q dw= -0

Q ker(w) Nker(T®) =0.
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Twisted quasi Hamiltonian spaces

Basic examples of spaces with Gk-valued moment maps:
@ Twisted conjugacy classes
@ Twisted moduli spaces on surfaces with boundary
@ Products (‘fusion’)

If ¥ = Ad¢ ok, get Gr'-valued moment map

' = dc.

= Enough to consider diagram automorphisms. )
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Twisted quasi-Hamiltonian spaces

Let k € Aut(G) be a diagram automorphism.

Let (M,w, ®) be a g-Hamiltonian space with Gr-valued moment
map. Then the set of twisted conjugacy classes appearing in (M)
form a convex polytope

A = pR(d(M)) C ¢~

The proof is similar to the untwisted case; uses ‘cross-sections’.

The result about products of twisted conjugacy classes follows by
applying this to a suitably twisted moduli space of the r-hold
sphere.
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Thanks.
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