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1 on Bohr-Somerfeld quantization

1.1  Classical picture

Hamilton’s equation on R** 3 (q,p) , (abbreviated no-
tation for (q,p)!);
OH OH
i=5 P (1.1)
defines a flow on the phase space R** > (g, p): that is,

the Hamiltonian vector field

OH OH
X — _
" ( dp’  Oq )

yields the time-evolution of the system

(¢,p) = Xulq,p)

Example. Harmonic oscilator.
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Two qualitative features of the Hamaltonian descrip-

tion of a system

1. Hamiltonian H is constant along the flow of the Hamil-

tonian vector field Xg:

dH OH,( 0H., OHOH OHOH

dt dq 8pp:3q dp  Op aq—O

q+

2. The divergence of Xy (= the infinitesimal variation

of the volume by the vector field Xp) is 0:




—

Geometry of the Hamiltonian description

1. The level manifold of the hamiltonian is an immersed
lagrngian submanifold L € R?" = T*R"

2. There is a half-density a on the lagrangian subman-

ifold L.



2 WKB Ansatz

2.1 Approximation of the stationary-phase solution of

the Schrodinger equation
Classical Hamiltonian:

1
H(q,p) = %Z i +V(g), (q,p)€ M=R".

The corresponding Schrodingier operator:

H=—-"A+V-.
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Schrodingier operator:

R 2
H=—"—"A+V..
2m

WKB Ansatz is a method to find an approximation of

the stationary-phase solution:

00
szeis/haa aNZak%k, ap = 1.
k=0

of the Schrodinger equation
(H—E)p=0.

Where S : M — R is the phase function, and
ay, is the amplitude.

The k + 1-st approximate solution is given by

k
eiS/% Z ay. %k



Hamilton-Jacobi equation
If the phase function S : M — R
Hamilton-Jacobi equation

VS|

m

HodS = +Viq) = F,

then the 1-st approximate solution (y;

AN

(H = E)p = O(}h),
is given by

wo = exp ~ 14+iS/H+ - -

Proof
O sy = L9 sy ﬁ;mmziys L 050 sy
0z IOz, O I Ox
5 _ [IvSI Z
- = 8 v g L
= O(}h).

satisfies the



2.2 The geometry of the Hamilton-Jacobi equation .
of. . . oS
" imageds = {(a.p) € T'M i = 57}
1. From the Hamilton-Jacobi equation: H o dS = F,
L is a submanifold of H™1(E) c T*M .
( Note that H~(E) is (2n — 1)-dimensional.)

L

2. Let w = > dp; A dg; be the symplectic form on
T*M. Then, since

0S

wlL = d() pidg;) = d a—%dqi) — d(dS) =0,

L is a Lagrangian submanifold, ( hence n-dimensional).

3.m:T"M — M gives the diffeomorphism

;- L — M.

4. The canonical 1-form 6 = ) p;dg; on T*M induces
the 1-form ¢*0 = d(S o 7z) on L;

0|l = —dg; .
| 9.0



Hamilton-Jacobi Theorem

Let H be a function on T*M . H is locally constant on
the Lagrangian submanifold L if and only if the Hamil-

tonian vector field Xy is tangent to L.

Look at the flow of Xz and the relation

dH =w(-, Xy), Xpyw)eT,L,Yw e L.



2.3 Semi-classical state

For a phase fnction S = S(x) that satisfies the Hamilton-
Jacobi equation: H o dS = FE, and for an amplitude

function a = a(x), we consider the solution of the form:

Y = expis/l/‘ a

If a satisfies the homogeneous transport equation:

da DS

0 (2.1)

then
o1 =expta

gives a 2nd order approximate ( stationary phase ) solu-

tion of the Schrdingier operator H

(H — E)p1 = O(If*).
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Proof
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Geometry of the semi-classical state

For a hamiltonian of the form H = Y, p?/2+V(q),

the hamiltonian vector field is

ov .0 1,
Xy = — i—.
. Z( 392')519@' P dg;

i
X g restricted to L = dS becomes

ov. . 0 oS 0
XH‘L B Z(_a%)apz‘ " aﬂfia%"

?

that is,
W*XH = VS (2.2)
. The homogeneous transport equation
da 0S
aAS + 2 implies
Z 8qj 8qj
85 oa 85
div (a*V S) = — = a(aAS+2
( ) Z (9qj (9qj Z g, (9q]
(2.3)
i.e. the vector field a?V.S is divertence free.
By the definition of divergence,
(divv)|dz| = Ly|dz], (2.4)

where Ly is the Lie-derivative and |dz| is the volume

form.
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(?7?): m Xy =VS |
(??):div (a*VS) =0 and
(??7): (divv)|dx| = Ly|dx|
yield
L2x, |dz| = Lievg) |dz| = div (aVS) |dz] =0,
—
Ly, (a®|dz]) =0, on M.

Since
the vector field Xy is tangent to L , (Hamilton-Jacobi
theorem), and
the Lie derivation is diffeomorpism invariant,

this equation may be lifted by 7|L : L — M to L:

Lx, (a®ldg]) =0,  w(q) ==

By a®|dg| = (a|dg|"/?)? it is rewritten as

Lxy(a ‘dq,lﬂ) = 0.
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Lxy (a ‘dq’1/2) = 0.

We have seen that geometric interpretation of the homo-
geneous transport equation is summarized to the asser-
tion

"there exists a half density on the Lagrangian submani-

fold L that is invariant under the hamiltonian vector field
XH .77

14



3 Geometric quantization of a lagrangian em-
bedding L < T*M

3.1

semi-classical approximation of a hamiltonian system H

means the following triplet ( L,7, a):

1. (L,7): Lagrangian immersion such that the image
i(L) is contained in the energy level set H1(E) of

Hamiltonian H.

2. a : a half density on L that is invariant under the

hamiltonian flow of H.
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7 Quantization 7 means to have an approximate solu-
tion of the Schrodinger equation H — E = 0 from the
data (L,i,a) .

That is, starting from the phase function S that satis-
fies the Hamilton-Jacobi equation and
the half-density a|dg|'/? on the Lagrangian space L =
dS Cc T*M,
we construct an approximation of the stationary phase
solution

o = e (dS) a.
of the Schrodinger equation; (H — E)p = O(J?).

The classical hamiltonian system (R**, H = %+%q2)
has a quantization ¢ = e*/#(dS)*a when S satisfies
the Hamilton-Jacobi equation and a satisfies the homo-

geneous transport equation.
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3.2 Pre-quantization of a projectable Lagrangian

Let M be a manifold. We shall investigate the pre-
quantization of a Lagrangian submanifold of the cotan-
gent bundle T*M — M. We denote a tangent vector
to T*M by

T(m’a)T*M =T .M & T;;M > (t,f)

The canonical 1-form = Liouville form is a 1-form € on

T*M , that is defined at (m,«) € T*M by

Q(m,a) ((tv g)) - Oé(t) ) V(t, g) < T(m,oz)T*Ma :

The canonical 2-form is w = d#f.
L C T*M is a Lagrangian submanifold iff w|L = 0.

Example:

9:Zpidqi, wzzdp@'/\dq@'a

L = imagedS, foraS: M — R.
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In the following we shall consider a projectable La-

grangian embedding

i L—T"M,

thatis, «|L: L% M.

L need not be exact L # tmagedS for a S.
w|L = 0 implies O|L closed on L. So, there is a cover
I{ L} of L, such that i*0 |Lj is an exact form on each
Ly; ie.
J ¢y on Ly ( primitive ) such that :

doy = i*0 | L.
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Remark

When the lagrangian embedding 7 : L — T*M is not
projectable, it appears singular points of the projection
mp=mov: L — M.
The critical values of 7y are called caustic points of L.

Maslov and Fedoriuk: Semi-classical approximation in
quantum mechanics

Duistermaat and Hormander: Fourier integral opera-
tor 2
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Therefore the quantization of ( Ly, ¢ | Ly, ¢y ) is given

by the oscillatory function on Ly :

I, = (’ﬂ'zkl)* el okl

To have the quantization of (L,4) we must patch to-
gether Ij, and give a well defined ” quantization” (L, 4, ¢)
on M :

I(L,i,¢) ~ Y (wply e/t
k
A sufficient condition is

el Okl — ewﬂ'/%, on LpNLj.
That is,
¢ —¢r € 2mh-Z on LpNL;. (3.1)

This is the Bohr-Sommerfeld condition.
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3.3 Bohr-Sommerfeld condition

Let L = Ui Li be a projectable Lagrangian covering.
Then
1 ¢;: L; — R, such that  d¢y = "0 | Ly ,.
and { \jx = ¢; — ¢y } defines the Liouville class

Ay = [Nl € H'(L, R).( independent of covers )
[t is also the De Rham cohomology class
[i*0) € H'(L,R)

Now if the Liouville class satisfies the Bohr-Sommerfeld

condition (?77):
Np=¢;—¢r € 2nlt-Z on LyNL;. (32

—
Ay = [\ € H'(L,R)

{¢;}, defines a

such that "0 = d¢. Thus we have global oscillatory

function on L :
oo/
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3.4 BS-condition as a Ty-principal bundle over L N
M
Ty =R/2n) Z: a torus with period 27/t.
We have studied almost the relations:
" Quantization” ~ oscilatory funcrion ~ a section of T'-
bundle over the Lagrangian embedding L <i> T*M.
We shall state them precisely.
6: the canonical 1-form on T*M,
w = df: the symplectic form on T M,
L = U;L;, : Lagrangian covering of L C T*M
¢;: Ly — R, d¢;, =1"0|L,
ANk = ¢j — O Nij +F Ajp + A = 0.
[BS-condition] A, € 27l Z.
Tj-principal bundle Py 5 L with the transition

functions { A }:
(z,t) ~ (z, t + () ), Ve e LN Ly teTy

Put v; = d¢p; = i*0|L; , then {~,}; gives a flat con-

nection on the principal bundle Py. In fact

Vi = Yk dAjk

the curvature : dvy; = d(i*0|L; = i**'d0|L; = i"'w|L; =0

22



Bohr-Sommerfeld condition Xz, € H'(M, 2} Z)
implies
b; = Pk mod Zy =27 { Z.
So we have a Ty = R/Zy -valued global section
¢: L — T;ﬁ.

(a parallel lift of P, — L).
Let p:Ty2xz — e e U(l) be a representa-
tion of Ty. Associated to the principal bundle * Py, we

have a line bundle (pre quantum line bundle )
Ep=1FP®,C:
The parallel lift ¢ : L — T induces a section
e L — U(1)

of the line bundle &. This is nothing but a global oscil-

latory function which we were looking for.
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Theorem 3.1. A projectable Lagranjian submanifold
L — T*M 1is quantifiable if the correspondding Li-

ouville class is 21 |t -integral for some It € R, .
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The discussion hithereto suggests the following

Abstract Formulation [Kostant, Souriau, Kir-
ilov, Guillemin |

e Pre-quantization of a manifold endowed with a

closed 2-form .

For a manifold X endowed with a closed 2-form o,
we call a pre-quantization of (X, o)
a hermitian line bundle (£, <, >) over X equiped with

a hermitian connection V whose curvature is o.
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