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1 on Bohr-Somerfeld quantization

1.1 Classical picture

Hamilton’s equation on R2n 3 (q, p) , (abbreviated no-

tation for (q,p)!);

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
(1.1)

defines a flow on the phase space R2n 3 (q, p): that is,

the Hamiltonian vector field

XH =

(
∂H

∂p
, −∂H

∂q

)
yields the time-evolution of the system

(q̇, ṗ) = XH(q, p)

Example. Harmonic oscilator.

H(q, p) =
p2

2m
+
k

2
q2

q̇ =
p

m
, ṗ = −kq =⇒ mq̈ = −kq
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Two qualitative features of the Hamiltonian descrip-

tion of a system

1. HamiltonianH is constant along the flow of the Hamil-

tonian vector field XH :

dH

dt
=
∂H

∂q
q̇ +

∂H

∂p
ṗ =

∂H

∂q

∂H

∂p
− ∂H

∂p

∂H

∂q
= 0

2. The divergence of XH (= the infinitesimal variation

of the volume by the vector field XH) is 0:

∇ ·XH =
∂

∂q

∂H

∂p
+
∂H

∂p
(−∂H

∂q
) = 0
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=⇒
Geometry of the Hamiltonian description

1. The level manifold of the hamiltonian is an immersed

lagrngian submanifold L ⊂ R2n = T ∗Rn

2. There is a half-density a on the lagrangian subman-

ifold L.
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2 WKB Ansatz

2.1 Approximation of the stationary-phase solution of

the Schrödinger equation

Classical Hamiltonian:

H(q, p) =
1

2m

∑
p2
i + V (q), (q, p) ∈M = R2n .

The corresponding Schrödingier operator:

Ĥ = − h/
2

2m
∆ + V · .
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Schrödingier operator:

Ĥ = − h/
2

2m
∆ + V · .

WKB Ansatz is a method to find an approximation of

the stationary-phase solution:

ϕ = eiS/h/ a , a ∼
∞∑
k=0

ak h/
k , a0 = 1.

of the Schrödinger equation

(Ĥ − E)ϕ = 0 .

Where S : M −→ R is the phase function, and

ak is the amplitude.

The k + 1-st approximate solution is given by

eiS/h/
k∑
ak h/

k
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Hamilton-Jacobi equation

If the phase function S : M −→ R satisfies the

Hamilton-Jacobi equation

H ◦ dS =
‖∇S‖2

2m
+ V (q) = E,

then the 1-st approximate solution ϕ0;

(Ĥ − E)ϕ = O(h/),

is given by

ϕ0 = expiS/h/ ∼ 1 + iS/h/ + · · ·

Proof

∂

∂xj
eiS/h/ =

i

h/

∂S

∂xj
eiS/h/,

∂2

∂x2
j

eiS/h/ =

(
i

h/

∂2S

∂x2
j

− 1

h/2
(
∂S

∂xj
)2

)
eiS/h/,

(Ĥ − E)ϕ0 =

[
‖∇S‖2

2m
+ V (q)− E − ih/

2m
∆S

]
expiS/h/

= O(h/).

7



2.2 The geometry of the Hamilton-Jacobi equation .

L
def.
= image dS = {(q, p) ∈ T ∗M ; pi =

∂S

∂qi
} .

1. From the Hamilton-Jacobi equation: H ◦ dS = E ,

L is a submanifold of H−1(E) ⊂ T ∗M .

( Note that H−1(E) is (2n− 1)-dimensional.)

2. Let ω =
∑

dpi ∧ dqi be the symplectic form on

T ∗M . Then, since

ω|L = d(
∑

pidqi ) = d(
∑ ∂S

∂qi
dqi ) = d(dS) = 0,

L is a Lagrangian submanifold, ( hence n-dimensional).

3. π : T ∗M −→ M gives the diffeomorphism

πL : L
'−→ M.

4. The canonical 1-form θ =
∑
pidqi on T ∗M induces

the 1-form i∗θ = d(S ◦ πL) on L;

θ|L =
∑ ∂S

∂qi
dqi .
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Hamilton-Jacobi Theorem

Let H be a function on T ∗M . H is locally constant on

the Lagrangian submanifold L if and only if the Hamil-

tonian vector field XH is tangent to L.

Look at the flow of XH and the relation

dH = ω(·, XH) , XH(w) ∈ TwL , ∀w ∈ L.
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2.3 Semi-classical state

For a phase fnction S = S(x) that satisfies the Hamilton-

Jacobi equation: H ◦ dS = E, and for an amplitude

function a = a(x), we consider the solution of the form:

ϕ = expiS/h/ a

If a satisfies the homogeneous transport equation:

a∆S + 2
∑ ∂a

∂qj

∂S

∂qj
= 0 (2.1)

then

ϕ1 = expiS/h/ a

gives a 2nd order approximate ( stationary phase ) solu-

tion of the Schrd̈ingier operator Ĥ

(Ĥ − E)ϕ1 = O(h/2).
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Proof

∂

∂xj
(eiS/h/a) =

i

h/

∂S

∂xj
eiS/h/a + eiS/h/

∂a

∂xj

∂2

∂x2
j

(eiS/h/a) =

(
− 1

h/2

(
∂S

∂xj

)2

+
i

h/

∂2S

∂x2
j

)
eiS/h/a

+2
i

h/

∂a

∂xj

∂S

∂xj
eiS/h/ +

∂2a

∂x2
j

eiS/h/

(Ĥ − E)ϕ =

(
1

2m
‖∇S‖2 + (V − E)

)
expiS/h/ a

− ih/

2m

(
a∆S + 2

∑ ∂a

∂xj

∂S

∂xj

)
expiS/h/ − h/2

2m
∆a expiS/h/
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2.4 Geometry of the semi-classical state

1. For a hamiltonian of the form H =
∑

i p
2
i/2 +V (q),

the hamiltonian vector field is

XH =
∑
i

(−∂V
∂qi

)
∂

∂pi
+ pi

∂

∂qi
.

XH restricted to L = dS becomes

XH|L =
∑
i

(−∂V
∂qi

)
∂

∂pi
+
∂S

∂xi

∂

∂qi
.

that is,

π∗XH = ∇S. (2.2)

2. The homogeneous transport equation

a∆S + 2
∑ ∂a

∂qj

∂S

∂qj
= 0 implies

div (a2∇S) =
∑
j

∂

∂qj
(a2 ∂S

∂qj
) = a(a∆S+2

∑ ∂a

∂qj

∂S

∂qj
) = 0

(2.3)

i.e. the vector field a2∇S is divertence free.

3. By the definition of divergence,

(div v)|dx| = Lv|dx| , (2.4)

where Lv is the Lie-derivative and |dx| is the volume

form.
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(??): π∗XH = ∇S ,

(??): div (a2∇S) = 0 and

(??): (div v)|dx| = Lv|dx|
yield

L(a2XH) |dx| = L(a2∇S) |dx| = div (a2∇S) |dx| = 0,

=⇒
LXH

( a2 |dx| ) = 0, on M .

Since

the vector field XH is tangent to L , (Hamilton-Jacobi

theorem), and

the Lie derivation is diffeomorpism invariant,

this equation may be lifted by π|L : L
'−→M to L :

LXH
( a2 |dq| ) = 0, π(q) = x.

By a2|dq| = (a|dq|1/2)2 it is rewritten as

LXH
( a |dq|1/2 ) = 0.
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LXH
( a |dq|1/2 ) = 0.

We have seen that geometric interpretation of the homo-

geneous transport equation is summarized to the asser-

tion

”there exists a half density on the Lagrangian submani-

fold L that is invariant under the hamiltonian vector field

XH .”
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3 Geometric quantization of a lagrangian em-

bedding L
i
↪→ T ∗M

3.1

semi-classical approximation of a hamiltonian system H

means the following triplet (L, i , a):

1. (L, i) : Lagrangian immersion such that the image

i(L) is contained in the energy level set H−1(E) of

Hamiltonian H .

2. a : a half density on L that is invariant under the

hamiltonian flow of H .
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” Quantization ” means to have an approximate solu-

tion of the Schrödinger equation Ĥ − E = 0 from the

data (L, i, a) .

That is, starting from the phase function S that satis-

fies the Hamilton-Jacobi equation and

the half-density a|dq|1/2 on the Lagrangian space L =

dS ⊂ T ∗M ,

we construct an approximation of the stationary phase

solution

ϕ = eiS/h/ (dS)∗a.

of the Schrödinger equation; (H − E)ϕ = O(h/2).

The classical hamiltonian system (R2n, H = p2

2m+ kq2

2 )

has a quantization ϕ = eiS/h/(dS)∗a when S satisfies

the Hamilton-Jacobi equation and a satisfies the homo-

geneous transport equation.
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3.2 Pre-quantization of a projectable Lagrangian

Let M be a manifold. We shall investigate the pre-

quantization of a Lagrangian submanifold of the cotan-

gent bundle T ∗M −→ M . We denote a tangent vector

to T ∗M by

T(m,α)T
∗M = TmM ⊕ T ∗mM 3 (t, ξ)

The canonical 1-form = Liouville form is a 1-form θ on

T ∗M , that is defined at (m,α) ∈ T ∗M by

θ(m,α) ((t, ξ)) = α(t) , ∀(t, ξ) ∈ T(m,α)T
∗M , .

The canonical 2-form is ω = dθ.

L ⊂ T ∗M is a Lagrangian submanifold iff ω|L = 0.

Example:

θ =
∑
i

pidqi , ω =
∑
i

dpi ∧ dqi ,

L = image dS, for a S : M −→ R.
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In the following we shall consider a projectable La-

grangian embedding

i : L ↪→ T ∗M,

that is, π|L : L
diffeo−→M .

L need not be exact L 6= image dS for a S.

ω|L = 0 implies θ|L closed on L. So, there is a cover

∃{Lk} of L, such that i∗θ |Lk is an exact form on each

Lk; i.e.

∃φk on Lk ( primitive ) such that :

dφk = i∗θ |Lk.
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Remark

When the lagrangian embedding i : L ↪→ T ∗M is not

projectable, it appears singular points of the projection

πL = π ◦ i : L −→M .

The critical values of πL are called caustic points of L.

Maslov and Fedoriuk: Semi-classical approximation in

quantum mechanics

Duistermaat and Hörmander: Fourier integral opera-

tor 2
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Therefore the quantization of (Lk, i |Lk, φk ) is given

by the oscillatory function on Lk :

Ik = (π−1
Lk

)∗ ei φk/h/ .

To have the quantization of (L, i ) we must patch to-

gether Ik and give a well defined ”quantization” I(L, i, φ )

on M :

I(L, i, φ) ∼
∑
k

(π−1
Lk

)∗ ei φ/h/ .

A sufficient condition is

ei φk/h/ = ei φj/h/ , on Lk ∩ Lj .

That is,

φj − φk ∈ 2πh/ · Z on Lk ∩ Lj . (3.1)

This is the Bohr-Sommerfeld condition.
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3.3 Bohr-Sommerfeld condition

Let L = ∪k Lk be a projectable Lagrangian covering.

Then

∃ φj : Lj −→ R, such that dφk = i∗θ |Lk ,.
and {λjk = φj − φk } defines the Liouville class

λ(L,i) = [λjk] ∈ Ȟ1(L, R) .( independent of covers )

It is also the De Rham cohomology class

[ i∗θ] ∈ H1(L,R)

Now if the Liouville class satisfies the Bohr-Sommerfeld

condition (??):

λjk = φj − φk ∈ 2πh/ · Z on Lk ∩ Lj . (3.2)

⇐⇒
λ(L,i) = [λjk] ∈ Ȟ1(L,R)

{φj}j defines a

φ : L −→ Th/ = R/Zh/ (3.3)

such that i∗θ = dφ. Thus we have global oscillatory

function on L :

eiφ/h/ .
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3.4 BS-condition as a Th/-principal bundle over L
i
↪→

T ∗M

Th/ = R/2πh/Z : a torus with period 2πh/.

We have studied almost the relations:

”Quantization”∼ oscilatory funcrion ∼ a section of Th/-

bundle over the Lagrangian embedding L
i
↪→ T ∗M .

We shall state them precisely.

θ: the canonical 1-form on T ∗M ,

ω = dθ: the symplectic form on T ∗M ,

L = ∪jLj, : Lagrangian covering of L ⊂ T ∗M

φj : Lj −→ R, dφj = i∗θ|Lj
λjk = φj − φk: λij + λjk + λki = 0.

[BS-condition] λjk ∈ 2πh/Z.

Th/-principal bundle Ph/
π−→ L with the transition

functions {λjk}:

(x, t) ∼ (x, t + λjk(x) ), ∀x ∈ Lj ∩ Lk, t ∈ Th/

Put γj = dφj = i∗θ|Lj , then {γj}j gives a flat con-

nection on the principal bundle Ph/. In fact

γj = γk + dλjk

the curvature : dγj = d(i∗θ|Lj = iastdθ|Lj = iastω|Lj = 0
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Bohr-Sommerfeld condition λ(L,i) ∈ H1(M, 2π h/Z)

implies

φj ≡ φk mod Zh/ = 2π h/Z.

So we have a Th/ = R/Zh/ -valued global section

φ : L −→ Th/.

( a parallel lift of Ph/ −→ L).

Let ρ : Th/ 3 x −→ e−ix/h/ ∈ U(1) be a representa-

tion of Th/. Associated to the principal bundle i∗Ph/, we

have a line bundle (pre quantum line bundle )

Eh/ = i∗Ph/ ⊗ρ C :

The parallel lift φ : L −→ Th/ induces a section

ei φ/h/ : L −→ U(1)

of the line bundle Eh/. This is nothing but a global oscil-

latory function which we were looking for.
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Theorem 3.1. A projectable Lagranjian submanifold

L ↪→ T ∗M is quantifiable if the correspondding Li-

ouville class is 2π h/ -integral for some h/ ∈ R+.

24



The discussion hithereto suggests the following

Abstract Formulation [Kostant, Souriau, Kir-

ilov, Guillemin ]

•Pre-quantization of a manifold endowed with a

closed 2-form .

For a manifold X endowed with a closed 2-form σ,

we call a pre-quantization of (X, σ)

a hermitian line bundle (L , < , >) over X equiped with

a hermitian connection ∇ whose curvature is σ.
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